
SANDIA REPORT
SAND2004-6574
Unlimited Release
Printed January 4, 2005

Sensitivity Technologies for Large
Scale Simulation

B. G. van Bloemen Waanders, R. A. Bartlett, S. S. Collis,
E. R. Keiter, C. C. Ober, T. M. Smith (Sandia National Laboratories)
V. Akcelik, O. Ghattas, J. C. Hill (Carnegie Mellon University)
M. Berggren (University of Uppsala),
M. Heinkenschloss (Rice Unversity),
L. C. Wilcox (Brown University)

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•� •�U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-6574
Unlimited Release

Printed January 4, 2005

Sensitivity Technologies for Large Scale Simulation

B. G. van Bloemen Waanders, R. B. Bartlett, S. S. Collis,
E. R. Keiter, C.C. Ober, T. M. Smith
(Sandia National Laboratories 1)

V. Akcelik, O. Ghattas, J. C. Hill (Carnegie Mellon University),
M. Berggren (University of UppSala),
M. Heinkenschloss (Rice University),
L. C. Wilcox (Brown University)

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-MartinCompany, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

iii

Acknowledgement

The authors would like to thank the LDRD office for providing funding for the majority of this work, but
also acknowledge CSRF for providing funding for time domain decomposition and error estimation
research. The authors would like to thank the following individuals for valuable discussion and
contributions: Larry Biegler, George Biros, Paul Boggs, Matt Gammel, Mike Heroux, Jan Hesthaven,
Russel Hooper, Kevin Long, Andy Salinger, John Shadid, and Tim Warburton.

The format of this report is based on information found in [149].

iv

Contents

Executive Summary . xvi

1 Introduction 1

1.1 Mechanics of sensitivity calculations . 2

1.2 Direct and Adjoint based inversion of contamination events . 4

1.3 Automatic differentiation and linear algebra interfaces . 6

1.4 Transient simulations . 7

1.5 Adjoints for error estimation, uncertainty quantification . 8

1.6 Outline of the report . 9

2 Mathematical overview of sensitivity computations 10

2.1 Steady-state sensitivities . 11

2.1.1 Implicit state solution and constraint sensitivities . 12

2.1.2 Reduced gradients . 13

2.2 Transient sensitivities . 14

2.2.1 Implicit DAE solutions and reduced auxiliary response functions 15

2.2.2 Reduced auxiliary response function derivatives . 15

2.2.3 Transient direct sensitivities . 16

2.2.4 Transient adjoint sensitivities . 16

3 Offline/Online QP Solver Stratgies for Real Time Inversion 18

3.1 Introduction . 18

3.1.1 Statement of the Problem: General QP Formulation . 19

v

3.2 Reduced QP problem . 20

3.3 Decomposition of Reduced QP into Offline and Online Subproblems 21

3.3.1 Offline Subproblem . 22

3.3.1.1 Computing Compressed Sensitivities using the Forward Approach 22

3.3.1.2 Computing Compressed Sensitivities using the Adjoint Approach 23

3.3.2 Online Subproblem . 23

3.4 Example Application: Source Inversion for Steady-State Convection-Diffusion in a 3D Air-
port Terminal . 24

3.5 Summary and Conclusions . 27

3.6 Recommendations and Future Work . 28

4 Large Scale Inversion of a Contaminant in a Regional Model using Convection-Diffusion 29

4.1 Introduction . 29

4.2 Convection-Diffusion and First Order Optimality Conditions . 30

4.2.1 Contaminant Transport by Convection-Diffusion . 31

4.2.2 First Order Optimality Conditions and Inversion Equations . 32

4.3 Implementation and Numerical Results . 34

4.3.1 Transport of a Source Contaminant . 34

4.3.2 Source Inversion Results . 34

4.3.2.1 Number of sensors . 35

4.3.2.2 Regularization Parameter . 37

4.4 Conclusions . 37

5 Automatic Differentiation 39

5.1 Introduction . 39

5.2 Background . 40

5.3 Hybrid symbolic/AD approaches for element-based assembly models 45

5.3.1 Global derivative computations . 46

5.3.2 Sparse Jacobian matrix and Jacobian-vector assembly . 47

vi

5.3.3 Precomputed-storage and storage-free approaches . 48

5.3.4 Element derivative computations . 48

5.3.5 Levels of hybrid symbolic/AD differentiation . 51

5.4 Finite-volume discretization example . 52

5.4.1 The basic residual function and level-0 hybrid symbolic/AD differentiation 52

5.4.2 Two-loop edge-based residual assembly . 53

5.4.3 State Jacobian-vector product assembly . 54

5.4.4 Results for various Jacobian-vector product assembly methods 59

5.5 Conclusions . 62

6 Comparison of Operators for Newton-Krylov Method for Solving Compressible Flows on Un-
structured Meshes 64

6.1 Introduction . 64

6.2 Governing Equations . 65

6.3 Algorithmic Formulation . 66

6.4 Steady-State Solution Strategies . 69

6.4.1 Newton-based Strategies . 69

6.5 Transient . 70

6.6 Pseudo-Transient . 70

6.7 Homotopy . 71

6.8 Newton-Krylov Based Solver . 72

6.9 Matrix-Free Operator (MF) . 72

6.10 Finite-Difference Coloring Operator (FDC) . 73

6.11 Approximate Analytic Operator (AD) . 73

6.12 Preconditioning . 74

7 Towards Shape Optimization 86

7.1 Introduction . 86

7.2 Residual and state computations . 89

vii

7.2.1 The Euler equations . 89

7.2.2 A node-centered finite-volume discretization of MUSCL type 90

7.2.3 State computations . 93

7.2.3.1 Gradient and residual . 93

7.2.3.2 Forward state Jacobian-vector product . 94

7.2.3.3 Adjoint state Jacobian-vector product . 97

7.2.4 Adjoint geometric Jacobian-vector product . 99

7.2.5 Finite-volume dual-mesh algorithm . 99

7.2.5.1 Adjoint dual-mesh Jacobian-vector product . 100

7.3 Summary . 101

8 The Development of Abstract Numerical Algorithms and Interfacing to Linear Algebra Li-
braries and Applications. 102

8.1 Introduction . 102

8.2 Classification of linear algebra interfaces . 103

8.3 Vectors in Numerical Software and Challenges in Developing Abstract Interfaces 105

8.3.1 Variety of vector operations needed . 105

8.3.2 Current approaches to developing interfaces for vectors and vector operations 106

8.4 Vector Reduction/Transformation Operators . 107

8.4.1 Introduction to vector reduction/transformation operations . 107

8.4.2 An object-oriented design for reduction and transformation operators 108

8.4.3 Computational results for reduction/transformation operators 111

8.5 TSFCore . 112

8.5.1 Basic requirements for TSFCore . 112

8.5.2 Overview of TSFCore . 113

8.5.3 Some TSFCore details and examples . 115

8.5.3.1 A motivating example sub-ANA : Compact limited-memory BFGS 116

8.5.3.2 MultiVector . 117

8.6 Conclusions . 121

viii

9 Instrusive Optimization of a PDE Device Model using Partial Nonlinear Elimination Newton
Based Solver 124

9.1 Introduction . 124

9.2 Partial Nonlinear Elmination in a Newton-based Nonlinear Equation Solver 125

9.2.1 Two-level Newton methods . 126

9.2.2 Full Newton step computation with two-level Newton globalization 127

9.3 Electrical Simulation Example . 129

9.4 Problem Definition . 129

9.4.1 Device Simulation . 129

9.4.1.1 Poisson equation . 130

9.4.1.2 Species continuity equations . 130

9.4.1.3 Initial Condition . 131

9.4.1.4 Boundary Conditions . 132

9.4.2 Coupling Equations . 133

9.5 Solution Methods . 133

9.5.1 Similarities . 134

9.5.2 Differences . 134

9.5.3 Coupling Algorithms . 135

9.5.3.1 Tight Coupling: Full Newton . 135

9.5.3.2 Loose Coupling: Two-Level Newton . 135

9.5.3.3 Loose Coupling: Modified Two-Level Newton . 136

9.5.3.4 Loose Coupling: Two-Level Newton with Continuation 137

9.5.3.5 Voltage Limiting with Two-Level Newton . 138

9.6 Conclusions . 139

10 Time-Domain Decomposition Iterative Methods for the Solution of PDE Constrained Opti-
mization Problems 140

10.1 Introduction . 140

10.2 Temporal decomposition of the problem . 142

ix

10.3 The Lagrange-Newton-SQP Method . 143

10.4 Iterative solution of the Newton system . 150

10.4.1 The Newton system . 150

10.4.2 Gauss–Seidel Iterations . 152

10.5 Application to the Optimal Control of Burgers Equation . 153

10.6 Application to the Dirichlet Control of the Two-Dimensional Heat Equation 156

10.7 Conclusions . 157

11 Adjoint-based a posteriori error analysis 159

11.1 Introduction . 159

11.2 Formulation: An Example from Linear Algebra . 160

11.3 Formulation: An Example PDE . 161

11.4 Continuous Adjoint Formulation . 161

11.5 Local Discontinuous Galerkin Discretization . 162

11.6 Computation of Error Estimates . 163

11.6.1 hp-adaption . 164

11.6.2 Refinement Strategies . 165

11.6.3 Smoothness Indicator . 165

11.7 Implementation . 165

11.8 Numerical Results . 166

11.8.1 Average Functional . 166

11.8.2 Gaussian Weighted Average Functional . 166

11.8.3 Boundary Flux Functional . 166

11.8.4 L-Shaped Domain . 170

11.9 Conclusion . 171

12 Continuous versus Discrete Adjoints 174

12.1 Formulation . 174

12.2 Results . 175

x

12.3 Time Regularization . 176

12.4 Summary . 178

References 193

Appendix

Tensor-valued matrices, Jacobians and eigendecompositioins . 193

Roe-type dissipation . 198

Derivation of partial derivatives of the reconstruction . 200

Implementation of “assignment to scalar” RTOp transformation operator. 202

Automatic generation of RTOp subclasses in C . 204

Example transformation operator . 204

Example reduction operator . 206

xi

List of Figures

3.1 Two-D cross-section of the 3D airport terminal model. Also shown is an example flow
pattern and contaminate release simulation. 25

3.2 Plots for a 2D cross-section of the top bottom floor in the 3D airport terminal model (shown
in Figure 3.1) of input source and inverted source for nu = 100 discretized inversion pa-
rameters. 26

4.1 Transport of chemical over an 8 Gaussian synthetic landscape at initial time, 30, 60, and 90
timesteps. 35

4.2 Inversion results: target concentration (top left), 6x6x6 sensor array inversion (top right),
11x11x11 sensor array inversion (bottom left), and 21x21x21 sensor array array (bottom
right). 36

5.1 Example of a simple function f(x) ∈ IR4 → IR with nonlinear operations up front followed
by all linear operations. 45

6.1 Convergence history vs. cpu time for the first-order simulations. 81

6.2 Convergence history vs. cpu time for the second-order simulations. 81

6.3 Convergence history vs. # nonlinear iterations for inviscid transonic flow over a NACA 0012
airfoil. 82

6.4 Convergence history vs. # nonlinear iterations for the supersonic inviscid flow over a NACA
0012 airfoil with Ma=2. 82

6.5 Convergence history vs. # nonlinear iterations for laminar flow over NACA 0012 airfoil
with α = 0 deg. 83

6.6 Convergence history vs. # nonlinear iterations for laminar flow over NACA 0012 airfoil
with α = 10 deg. 83

6.7 Convergence history of the force coefficients vs. # nonlinear iterations. 84

6.8 Convergence history vs. # nonlinear iterations for turbultent flow over NACA 0012 airfoil. . . 84

6.9 Convergence history vs. # nonlinear iterations of the lift coefficient. 85

xii

6.10 Comparison of surface pressure coefficient to experimental data (symbols) found in AGARD,
1979. 85

7.1 A control volume having a nonzero intersection with a solid wall Γw. 90

7.2 Control volume norms in 2D . 91

7.3 Dual mesh algorithm in 3D . 101

8.1 UML [42] class diagram : Interfaces between abstract numerical algorithm (ANA), linear
algebra library (LAL), and application (APP) software. 104

8.2 UML class diagram : vector reduction/transformation operators . 109

8.3 UML interaction diagram : Applying a RTOp operator for an out-of-core vector 110

8.4 UML collaboration diagram : Applying a RTOp operator for a distributed parallel vector . . . 110

8.5 Ratio of total process CPU times for using six primitive operations versus the all-at-once
operator for the operation in (8.6) (number of processes = 128, number elements per process
= 50, 500, 5000, 50000 and num axpys = 1 ... 400) . 112

8.6 Ratio of total process CPU times for using five primitive reductions versus the all-at-once op-
erator for the operation in (8.2) and (8.5). The times for the primitive operation approaches
with cached temporary vectors and dynamically allocated temporary vectors are both given. 113

8.7 UML class diagram : Major components of the TSF interface to linear algebra 115

8.8 A compact limited-memory representation of the inverse of a BFGS matrix. 116

8.9 Carton of disturbed and locally replicated multi-vectors which are used in the example com-
pact LBFGS sub-ANAwhen run in SPMDmode on four processors. The process boundaries
are shown as dotted lines. The numbers for rows and columns of each multi-vector are also
shown. 119

8.10 Carton of distributed-memory matrix-matrix product (i.e. block dot product) T1 = ST V
run in SPMD mode on four processors. This operation first performs local matrix-matrix
multiplication with the entries of ST and V on each processor using level-3 BLAS and then
a global reduction summation operation is performed (using MPI) to produce T1 which is
returned to all of the processors. 120

8.11 Carton of local matrix-matrix product T3 = QssT1 involving locally replicated multi-vectors
run in SPMDmode on four processors. In SPMDmode this operation involves no processor-
to-processor communication at all. 121

xiii

8.12 Carton of distributed-local matrix-matrix product U = ST3 involving both distributed and
locally multi-vectors run in SPMD mode on four processors. To perform this operation, the
local elements in the distributed multi-vector S are multiplied with the locally replicated
multi-vector T3 and the result of the matrix-matrix product are set to the local elements
of the distributed multi-vector U . In SPMD mode this operation requires no processor-to-
processor communication at all. 122

10.1 The variables x and the operator G . 145

10.2 The operator vector product G′(x)δx. (Here, yi = yi(·; yi, ui) and λi = λi(·; yi, ui, λi+1)
are the solution of the time subinterval state equation (10.4) and the time subinterval adjoint
equation (10.8), respectively, and zi = zi(·; yi, ui, δyi, δui) and ηi = ηi(·; yi, ui, λi+1, δyi, δui, δλi+1)
are the solution of the time subinterval linearized state equation (10.11) and the time subin-
terval linearized adjoint equation (10.12), respectively). 147

10.3 Standard integration versus Multiple Shooting approach . 149

10.4 Convergence history of GMRES (Example 2, Nt = 4, 8, 16) . 157

11.1 Element meshes for the average functional test and the Gaussian weighted average func-
tional test. 166

11.2 Contour plots of the primal and dual solutions for the average functional test case on the
initial mesh. (a) Primal solution for p = 5 and u = sin(πx) sin(πy). (b) Dual solution
p = 7 and J(w) =

∫
Ω w dx . 167

11.3 Contour plots of the primal and dual solutions for the Gaussian weighted average functional
test case on the initial mesh. (a) Primal solution for p = 5 and u = sin(πx) sin(πy). (b)
Dual solution for p = 7 and J(w) =

∫
Ω exp

(
−(x + 1

2)2 − (y + 1
2)2
)
w dx. 167

11.4 Meshes for the boundary flux functional test where all of the elements are refined between
each level. (a) starting mesh, (b) refinement level 1, (c) refinement level 2, (d) refinement
level 3. 170

11.5 Contour plots of the primal and dual solutions for the boundary flux functional test case on
the initial mesh. (a) Primal solution for p = 4 and u = sin(πx) sin(πy). (b) Dual solution
p = 6 and J(w) =

∫
∂Ω κ∂w

∂n ds where κ(x, y) = 1 on the interior hole boundary. 171

11.6 (a) Contours of the primal solution on the staring mesh defined in polar coordinates as
u(r, θ) = r2/3 sin(2π

3 θ). (b) Contours of the dual solution for J(w) =
∫
Ω uw dx. (c)

The final mesh where different colors represent the polynomial-order of the element p + 1.
We have used the global TOL refinement strategy with TOL = 10−7 and cf = 0.1. (d) Here
is a contour plot of the error estimate ηK . Most of the error is concentrated at the corner. . . . 172

11.7 The error in the functional, J(w) =
∫
Ω uw dx as a function of the square root of the degrees

of freedom. We see that for just h-adaption the best choice is p = 1 and higher order
interpolation does not help — it actually hurts the performance. We also see that for both
refinement strategies we get exponential convergence in the functional of interest. If we put
a straight-line fit through � it has a slope of 2.8. 173

xiv

12.1 Convergence of nonlinear CG for Robin boundary control of the heat equation with and
without time-regularization. (Left) without time-regularization: DA, CA(BC),

CA(p − 1). (Right) with time-regularization αt = 0.1: DA, CA(BC),
CA(TR). 177

12.2 Comparison of states and controls for Robin boundary control of the heat equation. (Left)
State: Target, DA, CA(BC), CA(p − 1). (Right) Control:
DA, CA(BC), CA(p − 1) . 177

12.3 Effect of time-regularization (αt = 0.1) on Robin boundary control for the heat equa-
tion (results after 6 iterations). (Right) State: Target, DA, CA(BC),

CA(TR). (Left) Control: DA, CA(BC), CA(TR). 178

xv

Executive Summary

Sensitivity analysis is critically important to numerous analysis algorithms, including large scale
optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research
focused on developing tools, algorithms and standard interfaces to facilitate the implementation of
sensitivity type analysis into existing code and equally important, the work was focused on ways to
increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the
development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical
algorithms, time domain decomposition algorithms and two level Newton methods. We atttempt to
accomplish the second goal by presenting the results of several case studies in which direct sensitivities and
adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint
based a posteriori error estimation.

A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and
transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct
sensitivity method is implemented to solve a source inversion problem for steady state internal flows
subject to convection diffusion. Real time performance is achieved using novel decomposition into offline
and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event
in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time
domain decomposition algorithms in an attempt to improve the efficiency of transient simulations.

Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid
automatic differentiation methods and implemented this approach for shape optimization for gas dynamics
using the Euler equations. The hybrid automatic differentiation method was applied to a first order
approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the
AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape
optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator.

A mathematical formulation for mixed-level simulation algorithms has been developed where different
physics interact at potentially different spatial resolutions in a single domain. To minimize the
implementation effort, explicit solution methods can be considered, however, implicit methods are
preferred if computational efficiency is of high priority. We present the use of a partial elimination
nonlinear solver technique to solve these mixed level problems and show how these formulation are closely
coupled to intrusive optimization approaches and sensitivity analyses.

Production codes are typically not designed for sensitivity analysis or large scale optimization. The
implementation of our optimization libraries into multiple production simulation codes in which each code
has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task,
we have developed a standard interface between the numerical algorithm (such as optimization) and the
underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the
Trilinos framework and the goal is to promote the use of these interfaces especially with new developments.

Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin
discretications of Poisson’s equation. The goal is to investigate other ways to leverage the adjoint
calculations and we show how the convergence of the forward problem can be improved by adapting the
grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but
if discrete adjoints are available it may be possible to reuse the discrete version for error estimation. We
investigate the advantages and disadvantages of continuous and discrete adjoints through a simple example.

xvi

Chapter 1

Introduction

Sensitivity analysis of large-scale systems is important in many engineering and scientific applications,
such as chemical, mechanical and electrical engineering and economics. Sensitivity analysis generates
essential information for parameter estimation, optimization, control, model simplification and
experimental design. Consequently, algorithms that perform such an analysis in an efficient and rapid
manner are invaluable to researchers in many fields.

Considerable amount of work has been conducted in the technical community that involves sensitivity type
calculations. Some examples include shape optimization in computational fluid dynamics, parameter
identification in the climate forecasting community, performance identification for electrical circuits, image
reconstruction, and uncertainty quantification in groundwater hydrology. The aerodynamics community
have actively made use of sensitivity analysis. In particular, adjoint formulations have been developed to
solve optimization problems in three dimensions from smaller components to entire aircraft design
[128, 129, 181, 209, 180]. The primary purpose of these adjoint calculations has been to improve the shape
of aircraft components and in some case entire aircraft structures by minimizing the drag or maximizing the
lift with respect to mesh movements. The use of direct sensitivities and adjoint methods for atmospheric
and oceanic systems was first described by Marchuk et al. [156] and Konterev [137]. Kaminski et al. [132]
present the implementation of adjoint methods through the use of an reverse automatic differentiation
compiler for a three dimensional atmospheric transport of a passive scalar. Daescu et al. [67] discuss the
implementation of adjoint sensitivities into an atmospheric chemical transport code using automatic
differentiation methods (source transformation). They attempt inversion for global models through a
qualitative review of sensitivity contours of the source with respect to various chemicals. Daescu et al. [68]
demonstrate a four dimensional data assimilation to obtain an optimal estimate of the initial state of a
dynamical system solving a large unconstrained optimization problem. Finally, Sandu et al. [194] discuss
adjoint sensitivities for the gradient calculations using the Kinetic preprocessor (KPP) software tool that
facilitates direct and adjoint sensitivities for the transport of chemical species. Sensitivity analysis has been
used extensively in electrical simulation. In fact, one of first adjoint method developments was initiated in
this community [74]. Numerous work has been done over the years in particular to assess the performance
and robustness of electrical circuits [203, 82, 57, 173]. The primary use for sensitivity analysis is to
understand and improve the performance of circuits. In medical imaging, inverse problems are solved
using adjoint methods in tomography [78] for image reconstruction. Likewise in geophysics, adjoint
implementations are used to invert for material properties [205, 18, 171, 172, 171, 8].

Although the mathematics of sensitivity calculations are well understood, the implementation of

1

sensitivities in support of optimization and other analysis tools in large production codes has not been fully
addressed. Part of the reason why most existing production codes face a difficult implementation task is
because the original design concentrated exclusively on the forward simulation and did not consider any
analysis capabilities, including fundamental building blocks such as sensitivity calculations. The lack of an
appropriate software structure and the implementation of algorithms that are not suitable towards
sensitivities cause inefficient future implementation issues, especially if large numbers of sensitivity
parameters are of interest. Some of the specific implementation deficiencies, include poorly designed
software interfaces, explicit solutions, inexactness of the state Jacobians, matrix-free methods, explicit
solvers, non-differentiable methods, non-smooth behaving state solutions and complicating issues with
transient simulations. Although we do not address all these issues, most of them can be circumvented by
making sensitivity analysis a high priority as part of the initial design. Retrofitting existing codes depends
on the underlying physics algorithms, linear algebra structure and how much implementation effort can be
afforded. One of the motivations of this work was to develop techniques, methods and software tools to
help promote the consideration of sensitivities as a priority equivalent to the development of the underlying
physics so that costly future refactoring can be avoided by concentrating on 1) mechanics of calculating
direct sensitivities and adjoints, 2) software interfaces including automatic differentiation methods, 3)
improvements of sensitivity related calculations for transient methods, 4) continuous adjoints, and 5) an
investigation of adjoint-based error estimation to demonstrate the potential dual use of sensitivity
information.

1.1 Mechanics of sensitivity calculations

The use of sensitivity analysis appeared as early as the 1940’s through perturbation and variational
approaches [93, 217]. Initial forward and adjoint formalisms can be traced back to Levin et at [144],
Roussopolos [186], and Stacey [200]. This work concentrates on the formalism of sensitivity calculations
through variational calculus where the set of nonlinear PDE equations is abstracted away [48] and
obviously issues related to implementation to the underlying PDE-based simulation are not addressed.
Additionally, in all the application studies that have been conducted over the last couple of decades, the
implementation issues are not addressed and are specific to the simulation code. It is exactly this interface
that is a primary focus of our research. We focus on development of tools and methods that can be reused
and we focus on various studies to help motivate the use of direct sensitivities and adjoint methods.

At the center of all these problems is a set of linear or nonlinear state equations that define the forward
problem. These state equations may be steady-state or transient in nature. In many of the problems
considered here, these equations arise from a spatial discretization of a PDE over some geometrical
domain. The addition of analysis methods applied to these simulation problems require some subset of
input variables of interest u ∈ IRnu . Here the input variables of interest u will be referred to as auxiliary
variables in the most general setting. Once the simulation problem is solved for some value of u, one or
more auxiliary response functions are defined which inform the analysis method of an important
observation or performance metric of the simulation problem. These auxiliary response functions are
generally some type of reduction over the solved state variables. Examples of these response functions of
interest might be a maximum stress, lift of a wing, drag over a wing, weight of a system, or flux across
some surface. These response functions are typically what drive a design or evaluation study of a system.

Through a simulation solve, the mapping of auxiliary variables u to response functions can be represented

2

in the general form
u → ĝ(u) (1.1)

where
u ∈ IRnu are the auxiliary variables or parameters, and
ĝ(u) ∈ IRnu → IRng are the reduced auxiliary response functions.

An evaluation of ĝ(u) implies a solution of the underlying simulation problem.

All of the analysis methods considered here not only need to compute the auxiliary functions ĝ(u)
themselves, but they also require the first derivatives of these functions in the form of the derivative object

∂ĝ

∂u
∈ IRng×nu (1.2)

which is often times referred to as the reduced gradient. Actually, to be precise, the reduced gradient of the
response function ĝk(u) (where k = 1 . . . ng) is (∂ĝk/∂u)T . Therefore, each row of ∂ĝ/∂u is a reduced
gradient.

Note that the first derivatives ∂ĝ/∂u in (1.2) are typically approximated using finite differences. Assuming
forward finite-differences are used, this requires nu full simulations to be solved, one solve for each
perturbation in u. In addition, the resulting derivatives are often significantly inaccurate due to truncation
and round-off errors which are well known problems for finite-difference methods. The primary advantage
of these types of black-box finite-difference approaches is that they require almost no extra code
development effort to implement. The black-box term refers to treating the target function as an unknown
entity. This report focuses on approaches for computing (1.2) that are more efficient and/or more accurate
than standard black-box finite-difference approaches.

All of the approaches that are described in this report for computing reduced gradients of the form ∂ĝ/∂u
are computed using one of two general classes of approaches, direct or adjoint, where:

• Direct sensitivity approaches compute ∂ĝ/∂u in O(nu) flops1, independent of ng, and

• Adjoint sensitivity approaches compute ∂ĝ/∂u in O(ng) flops, independent of nu.

Therefore, in general, when there are many more auxiliary variables nu than response functions ng (i.e.
nu � ng) – which is often the case for applications and analysis methods – adjoint approaches are more
efficient. Alternatively, if there are many more response functions ng than auxiliary variables nu, direct
approaches are generally more efficient.

Sensitivity methods for PDE-constrained problems can also be further classified into discrete and
continuous approaches. Discrete approaches start from a discretization of the forward problem and are
based on strictly finite-dimensional algebraic manipulations. An alternative strategy is to derive the
continuous adjoint, or dual problem. The dual problem can be derived based on the Euler-Lagrange
identity. There are a number of reasons for considering a continuous approach: it is the standard
implementation strategy for a posteriori error estimation, it may be an easier implementation option if
transposed Jacobians are not available, and additional interpretation capabilities are available. This adjoint

1floating point operations

3

formulation can be implemented in the same way as the forward simulation and, in addition, can reuse the
same solution procedures as the forward problem. The continuous adjoint can be used as an additional
interpretation tool where the adjoint solution variables, also known as the Lagrange variables in an
optimization method, can be interpreted as a sensitivity of the auxiliary response functional with respect to
perturbations in the state equations. A detailed comparison of discrete and continuous adjoints was
conducted by Nadarajah et al. [168]. It should be noted that there are some disadvantages to the continuous
adjoint, including a refined mesh is required to achieve an accurate reduced-gradient (with respect to the
discrete forward problem), boundary conditions need to handled with care, and as much as twice as much
code is required in comparison to the discrete implementation.

Discrete direct sensitivity methods require solving multiple linear systems involving the state Jacobian
(related to the underlying state simulation equations) in which each right-hand-side column is dependent
on a different auxiliary variable ui, for i = 1 . . . nu. For an implicit solution procedure (such as Newton’s
method), the forward simulation depends on the solution of linear systems with this same state Jacobian;
therefore, the infrastructure for solving the forward problem can be often be used to solve for direct
sensitivities. The obvious limitation is that for larger numbers of auxiliary variables nu, many state solves
are necessary which could become intractable. Continuous direct sensitivity methods, which are applicable
to PDE-constrained problems, need not require linear system solves but are still require O(nu) flops over a
single simulation.

To address the issue of computational efficiency for large numbers of auxiliary variables, the adjoint
method can be considered. By a reordering of the computations, a discrete adjoint method can compute the
required reduced gradients using only O(ng) solves (independent of nu) with the adjoint of the state
Jacobian. If the state Jacobian matrix is explicitly formed, there is little more implementation effort
required in comparison to the direct case. Computing adjoints in the transient case involves further
complications.

Adjoint based a posteriori error analysis for finite element discretizations requires the solution of the
adjoint on a different solution space, which is efficiently achieved through the implementation of a
continuous adjoint. A discrete adjoint could also be used, however this means that the forward problem
needs to be solved for two different mesh resolutions, in addition to solving the adjoint equation (albeit one
solve). For finite-volume discretizations, where Galerkin orthogonality is not an issue, then the continuous
adjoint may not offer any computational efficiencies. If optimization and adaptivity both need to be solved
for a finite element discretization, then the discrete adjoint may have to be solved on two different meshes.
Other methods have been investigated to make use of the discrete adjoint, such as reconstruction
procedures [210], that avoid the computational expense of an additional solve. However, it is not clear how
effective these reconstruction methods are and this is an area for future research.

1.2 Direct and Adjoint based inversion of contamination events

Significant work has been conducted in the technical community using sensitivity type calculations. In this
report, we apply sensitivity calculations to a variety of physics ranging from simple heat equations and
convection diffusion to the more complex physics such as the Euler equations to simulate gas dynamics.
We differentiate this effort from previous work by exploiting sensitivity calculations for time domain
decomposition, adaptivity using a posteriori error estimation, offline calculation for real time performance,
and implicit coupling of multi-physics problems. The primary goal is to motivate the use of direct
sensitivity and adjoint methods especially in new developments so that a variety of analysis tools, in

4

particular optimization, can be easily implemented. Several application studies were conducted as part of
this work to demonstrate the utility of sensitivity type calculations.

We consider inversion problems to reconstruct source terms and initial conditions in the event of a
contamination event in both internal and external flow. We demonstrate the use of direct and adjoint
sensitivities on a source inversion problem subject to convection-diffusion. The application context is
related to developing numerical algorithms to combat intentional contamination events in certain large
internal spaces (i.e. airports, enclosed sports stadiums, etc) and external spaces (i.e. regional models, urban
canyons, etc). Assuming sensors are able to measure concentration values, a nonlinear least-squares
formulation can determine the original location, magnitude, and characteristics of the event. This then
enables a forward simulation to accurately predict the transport of the chemical for an appropriate
mitigation strategy. For internal spaces we have designed an offline/online solution technique separating
critical calculations so that we can achieve the goal of real time inversion capabilities.

The approach consists of decomposing repeated solution of a class of Quadratic Programming (QP)
problems into offline and online subproblems. The general formulation for the class of QPs we consider
encompasses several different types of inversion and least-squares problems with both steady-state and
transient state models. Our method exploits the properties that each solved QP has the same linear state
constraint matrices, and has a diagonal objective function Hessian with the same nonzero structure along
the diagonal. We exploit these properties by splitting the computation of the solution of the QP into offline
and online components. This approach allows for the “real time” solution of a relatively broad class of
these QPs using modest computing resources (at least for the online computation).

A similar inversion problem was investigated to demonstrate the utility of adjoint methods by considering a
transient inversion problem subject to convection-diffusion for an external flow problem. We are interested
in an inversion of initial conditions for a contamination event in an outdoor regional model and we assume
that inversion parameters exist everywhere in the spatial domain. The constrained optimization problem is
reformulated as an unconstrained problem by eliminating the transient states using a time integrator. The
solution process consists of first taking variations of this functional and then sequentially solving for the
states, adjoints and the inversion parameters. The goal of this development has been on computational
efficiency by using structured grids and matrix-free implementations. We are able to solve the inversion
problem for a reasonably large dataset relatively efficiently. However, to solve highly resolved regional
models, we need an efficient preconditioning strategy for the solution of the reduced Hessian. We have
developed the basic interface for a multigrid preconditioning approach and at the writing of this report, we
are in the process of performing various numerical tests.

We have applied this inversion problem on a synthetic landscape. Our numerical experiment consists of
collecting concentration measurements from a sparse set of locations from a forward simulation that is
initially used to predict the transport of chemical with known initial conditions throughout a domain. These
concentration measurements are then considered target values in a nonlinear least-squares formulation in
which the goal is to match these concentration values with predicted values by manipulating the initial
conditions. The set of unknown inversion parameters consists of values at every point of the spatial
domain. We are able to invert for the initial conditions with a reasonably small set of sensors.

5

1.3 Automatic differentiation and linear algebra interfaces

Sensitivity information is dependent on the fundamental derivative calculation and, the accuracy is very
important especially for analysis methods such as optimization. Analytic values are often time-consuming
to derive and difficult to implement. Finite-difference (FD) methods are dependent on the perturbation step
size which are problematic to set a priori. Standard automatic differentiation (AD) tools that use source
transformation are sensitive to the simulation code implementation and result in a cumbersome
development environment. We have developed both non-invasive and invasive hybrid AD strategies that
pre-compute and store Jacobian sub-matrices and then assemble Jacobian-vector products at the
mesh-object level. This approach may result in computations that are nearly five times faster than
one-sided finite differences. In addition, these derivative computations are accurate to machine precision.
We also found that low storage on-the-fly black-box uses of AD at the mesh-object level can result in
derivative computations that are very competitive in speed with FD methods and require little knowledge of
the actual mesh-object-level computations. However, we show how exploiting the structure of the
computations at a lower level and combining symbolically derived and coded derivatives with AD resulted
in significant improvements in CPU time and storage.

Furthermore hybrid symbolic and AD approaches are well suited to discretization methods for PDEs due to
the hierarchal structure of such methods. Hybrid symbolic AD methods can result in very accurate and
affordable derivative computations without having to rewrite an entire code but instead focus
differentiation tools on lower-level computations based on mesh objects (such as elements, edges, faces,
etc.). Additional interface issues need to be addressed if large scale optimization methods are to be
interfaced. A common observation of large production codes is that they are not built with convenient
underlying vector and matrix implementations. A portion of this report is devoted to the development of
“standard” implementations for abstract numerical algorithms and linear algebra. Even though this is not
central to sensitivity analysis, it is critical to our ability to efficiently implement sensitivities and
optimization algorithms in multiple production codes.

One of our primary hurdles in implementing sensitivities throughout applications at Sandia is the different
software implementations that have been used in simulation code. For optimization this interface is very
specific and often not recognized in the simulation development community. Although, various framework
are currently being developed to provide common services to different physics code developers, a standard
interface for abstract numerical algorithms (ANAs), such as optimization, uncertainty quantification,
stability analysis, nonlinear solvers, has not been adequately addressed. Ideally, all developers should
adhere to a standard linear algebra implementation and perform numerical algorithm development within
that standard. Gockenbach et al. has attempted to develop an approach to address this interfacing problem
[95]. This is a powerful approach but it has some limitations, some of which are critical to our
environment. The most obvious omission of the HCL framework is their serial implementation. This and
other smaller reasons, prompted our development of TSFCore which was designed specifically as simple as
possible to minimize the overhead of the PDE code developers. However, the interface consists of
sufficient flexibility that it can be applied to a variety of numerical algorithms, such as continuation
methods, nonlinear solvers, uncertainty quantification methods, and optimization.

TSFCore provides the intersection of all of the functionality required by a variety of abstract numerical
algorithms ranging from iterative linear solvers all the way up to optimizers. The foundation of TSFCore
described here only covers vector spaces, vectors, multi-vectors and linear operators. By adopting
TSFCore as a standard interface layer, interoperability between applications, linear algebra libraries and
abstract numerical algorithms in advanced scientific computing environments becomes automatic to a large

6

extent. An important subcomponent of TSFCore is the vector operator interface. Growing complexities
associated with computational environments, application domains, and data mapping place difficult
demands on the development of numerical algorithms. The vector operator interface proposed here
addresses these issues and allows the development of many types of complex abstract numerical algorithms
that are highly flexible and reusable.

Advanced object-oriented design patterns were used to develop the vector operator interface (RTOp) and
somewhat predictable numerical experiments demonstrate high efficiency in comparison to using a
combination of primitives. Also, simple scalability tests confirm minimal serial overhead for large number
of processors. Though the numerical efficiencies are noteworthy, development efficiencies and functionality
provide the main advantages of this approach including 1) vector implementation developers need only
implement one operation and not a large collection of primitive vector operations, 2) ANA developers can
implement vector operations without needing any support from vector implementation maintainers, 3)
ANA developers can optimize time consuming vector operations on their own for the platforms they work
with, 3) Reduction/transformation operators are more efficient than using primitive operations and
temporary vectors, 4) ANA-appropriate vector interfaces that require built-in standard vector operations
(i.e. axpy and norms) can use RTOp operators for the default implementations of these operations.

1.4 Transient simulations

Transient simulations with large numbers of design variables are a difficult challenge for optimization. The
large design space requires the use of adjoints but this means that the adjoint equations need to be
integrated backwards and this also means that the solution history of the forward simulation needs to be
saved for each time step. In the case of a linear PDE only the final state needs to be saved, but in the case of
a nonlinear PDE, storing the entire state history often becomes intractable.

Transient simulations pose problems when sensitivities of performance functions are required with respect
to many design parameters. In this case, adjoints need to be calculated and in the transient case an
integration backward in time is necessary for the adjoint solution. At each time point in a discrete adjoint
approach, the transpose of the state Jacobian is used to evaluate the adjoint system. The adjoint solution
therefore incurs the cost of either storing the state Jacobian at each time step or reconstructing the Jacobian
at each time step. In the case of direct sensitivities, a linear solve at each time step is required per design
variable. Although neither the storage nor the reconstruction cost are incurred for the direct method, only a
small number of design parameters can be considered.

A considerable amount of work has been conducted for calculating sensitivities for transient simulations
for ordinary differentiable equations (ODEs) and differentiable algebraic systems (DAEs) [155] [145]
[146] [50] [51] [91]. [196]. Forward sensitivity analysis cannot handle large numbers of parameters
because the computational expense becomes intractable. Whereas the adjoint, or reverse sensitivity
analysis method, can handle large number of sensitivity parameter. Conversely, the adjoint method is not
well suited to handle high dimensional functions of the solution. Powerful software has been developed by
Maly et al. [155], Li et al. [145] and Serban et al. [116]. These methods assume that a set of PDEs are
reduced to a set of ODEs or DAEs by discretizing the spatial components (method of lines). One primary
reason for not leveraging these software tools is that our focus in time domain decomposition requires
explicit control of all aspects of the calculation. Although access to the source code is possible, a complete
code refactoring would have been necessary.

7

Our work on time-domain decomposition extends the ideas of Berggren and Heinkenschloss[33] [108]
[109] [110] and attempts to achieve parallel speedup in the time domain. Time-domain decomposition
techniques have been applied to the solution of parabolic PDE constrained optimal control problems. The
time-domain decomposition approach is motivated by the need to cope with the large storage requirements
arising out of the strong coupling in time of states, adjoints and controls.

The time decomposition of the original problem leads to a large scale discrete–time optimal control
(DTOC) problem in Hilbert space. The solution of these DTOCs using a Lagrange-Newton-SQP method
have been presented. Near a solution of the problem this is equivalent to applying Newton’s method to the
first-order optimality conditions. The tasks arising in the implementation of the Lagrange-Newton-SQP for
the DTOC are related to the solution of the state, linearized state and adjoint equations restricted to time
subintervals. The linear system that has to be solved in each iteration of the Lagrange-Newton-SQP method
has a block structure, which motivates the application of block Gauss–Seidel (GS) methods for its solution.
The forward backward GS method is particularly effective as a preconditioner.

Parallelization of the time-domain decomposition approach is currently under investigation. In particular,
the time-domain decomposition approach will be used as an additional layer of parallelization, in addition
to existing parallelization of PDE solvers or of the time-subdomain optimal control problems. Potential
savings may also result from the need to handle only smaller time subinterval problem. Depending on
problem size, this may allow one to reduce the use of slow memory and thus result in significant savings in
computing time.

1.5 Adjoints for error estimation, uncertainty quantification

Sensitivities are useful quantities for other analyses such as error analysis, uncertainty quantification, and
reduced order modeling. Although, the use of sensitivities for these types analyses are not quite as well
developed as for optimization methods. In this section we briefly discuss the use of sensitivities in the
context of these analysis tools. The primary goal is to provide additional motivation for the implementation
of sensitivity information by recognizing that a variety of analyses can be accomplished. We have chosen
to further investigate adjoint-based error estimation to better understand how one might leverage adjoint
implementations for optimization.

Adjoints are of particular interest because in the context of optimization, large design-spaces can be
considered at the cost of merely a single solve. However, adjoints can also be used for a posteriori error
estimation which in turn can be used for adaptivity. Although error estimation is tangential to optimization
it provides a general strategy to motivate developers beyond optimization to consider implementing adjoint
sensitivities. The implementation of adjoints is clearly 90 percent of the effort towards large-scale
optimization in a production code. Error estimation can be conducted with just residual calculations, but it
has been shown that adjoint-based a posteriori error estimation methods are more accurate, especially
since a particular performance functional has to be considered. Consequently adaptivity provides a more
accurate and computationally efficient solution.

We have implemented an adjoint-based error estimator for the local discontinuous Galerkin discretization
of Poisson’s problem. Here the error is measured in some functional of the computed solution. This
functional can be a weighted integral of the solution in the domain or a weighted integral of the flux of the
solution across a boundary. A smoothness indicator has also been written that is based on the convergence
of the coefficients of the projection of the solution on the orthonormal basis for a triangle. Using the error

8

estimates and the smoothness indicator we have obtained exponential decrease in the error of a weighted
integral of a singular solution of Laplace’s equation on an L-shaped domain.

For future work we would like to apply adjoint-based error estimates to time dependent problems,
nonlinear problems, other discretizations and then to real applications such as the compressible fluid flow
problems. This error estimate work is also considered preliminary prototyping for Sandia production
codes, such as codes in the SIERRA framework.

Our primary interest in error estimation is to promote the development of adjoints sensitivities and
investigate the dual use in both error estimation and optimization. Early work on error estimation was
conducted [85]. Significant work has been done in adjoint-based error estimation for hp-adaptivity in PDEs
using finite element discretizations
[28, 6, 6, 179, 201, 17, 80, 53, 141, 211, 29, 167, 4, 21, 89, 90, 106, 122]. Additional work has been done
on finite-volume methods [221, 130]. For a detailed review of the history and recent developments see
[29, 90]. Although residual-based error estimation is computationally more efficient than the adjoint based
error estimators, the accuracy is lacking.

Other analysis tools can leverage adjoint systems, namely uncertainty quantification and reduced-order
modeling. Uncertainty quantification is becoming an important analysis tool to account for variations in the
model or in the data. Like error estimation, the adjoint sensitivity can be leveraged and, in this case, it can
be used to predict the statistical relationship between certain parameters through covariance matrices. The
use of adjoint methods for uncertainty quantification purposed was beyond the scope of this project,
however, the interested reader can find additional details from Woodward et al. [219]. One of the
connection of adjoint operators to reduced-order modeling is for computing observability Grammians.
Again, this area of analysis is beyond the scope of our investigation, but we refer the interested reader to
Willcox et al. for additional details. [218, 187].

1.6 Outline of the report

The remainder of this report is organized as follows. Direct and adjoint sensitivities are applied to large
scale inversion problems that depend on convection-diffusion equations. We investigate inversion problems
for both internal and external flows. Automatic differentiation is critical to the development of efficient
derivative calculations in addition to providing accurate derivatives. Some performance results are
presented for a preconditioner that was calculated with an automatic differentiation procedure. We discuss
the mathematical formulation associated with shape optimization. The adjoint is derived and the linear
objects associated with shape optimization are discussed. A development of standard and convenient linear
algebra interfaces are presented. The goal is to avoid repeating the development of the same interfaces for
different simulation codes. The mathematical formulation for a two-level Newton method is developed to
address the implicit coupling of different physics. We use an electrical simulation code (Xyce) to show
how this strategy could be used when PDE-based model devices are coupled into electrical circuits. Time
domain decomposition methods for control problems are presented. We make use of multiple shooting
techniques and show some potential parallel improvement in the time domain. Also discussed is the use of
adjoints for a posteriori error estimation and adaptivity. Although error estimation appears tangential to our
optimization focus, both are strongly coupled to the adjoint. An adjoint implementation can potentially
solve an optimization problem and provide accurate grid adaptivity strategies to help improve the
computational efficiencies. The last chapter looks at some basic comparisons between discrete and
continuous adjoints when used in a model transient optimization problem.

9

Chapter 2

Mathematical overview of sensitivity
computations

The goal of this chapter is to provide a concise presentation of the basic sensitivity formulation. We focus
on two broad classes of applications: steady-state and transient. In either case, a set of auxiliary input
variables u ∈ IRnu is identified such that once specified, allow for a solution of the state equations. These
auxiliary variables represent some adjustable data for the state model and may include such things as
boundary conditions, reaction rates or other inputs of interest. The common element in steady-state and
transient sensitivity problems is that, once they are solved for particular value of the input parameters u,
they are used to define one or more reduced auxiliary response (or observation, or performance) functions
of the form

u → ĝ(u) (2.1)

where
u ∈ IRnu are the auxiliary variables or parameters, and
ĝ(u) ∈ IRnu → IRng are the reduced auxiliary response functions.

The reduced auxiliary response functions ĝ(u) have embedded in them the solution to the underlying
simulation problem given the input auxiliary variables u. Auxiliary response functions can represent
different types of quantities of interest. For example, in a CFD aerodynamic wing design problem,
response functions of interest might include the lift or drag of the wing. In a structural design application, a
functional of interest might be a maximum stress point.

We consider efficient and accurate approaches for computing the first derivatives of ĝ(u) in the form of the
derivative matrix object

∂ĝ

∂u
∈ IRng×nu . (2.2)

The matrix ∂ĝ/∂u is also know as the reduced gradient. Actually, each row ∂ĝk/∂u ∈ IR1×nu is the
transpose reduced gradient for the auxiliary function ĝk(u), for k = 1 . . . ng. The reduced gradients ∂ĝ/∂u
can be computed using either direct or adjoint approaches. In summary:

10

• Direct sensitivity approaches compute ∂ĝ/∂u in O(nu) flops1, independent of ng, and

• Adjoint sensitivity approaches compute ∂ĝ/∂u in O(ng) flops, independent of nu.

In this chapter, steady-state sensitivities are first presented followed by a discussion of transient
sensitivities. This overview pertains to wide ranges of steady-state and transient sensitivity problems for
applications including discretized PDEs and network-like problems. With respect to the PDEs, the
approaches described here are considered to be discrete approaches with respect to some reference spatial
discretization of the underlying PDE state equation. In later chapters, alternative continuous approaches to
sensitivity computations are addressed.

2.1 Steady-state sensitivities

Central to all steady-state problems is a set of, possibly nonlinear, state constraints that can be represented
as

c(y, u) = 0, (2.3)

where
y ∈ IRny are the state variables,
u ∈ IRnu are the auxiliary parameters, and
c(y, u) ∈ IRny+nu → IRny are the state constraint functions.

Equation (2.3) represents a set of nonlinear simulation equations which are also known as the constraints.
In this notation, c(y, u) is a vector function where each component cj(y, u), j = 1 . . . ny, represents a
nonlinear scalar function of the variables y and u. The variables y are referred to as the state (or
simulation) variables and the variables u are a set of auxiliary variables that take on different meanings
depending on the particular analysis method being considered. Note that the number of state y and
auxiliary u variables are ny and nu respectively. A typical simulation code requires that the user specify
the auxiliary variables u and then the square set of equations c(y, u) = 0 is solved for y. For a particular
application, one or more auxiliary (or observable, or performance) response functions may be of interest
and we denote these auxiliary response functions as

(y, u) → g(y, u), (2.4)

where
g(y, u) ∈ IRny+nu → IRng are the auxiliary (observable) response functions.

The auxiliary response functions may represent objective and auxiliary constraints in an optimization
problem, or just quantities of interest in an error estimation or uncertainty quantification problem. What is
common to all of these analysis methods is that the functions g(y, u) must be computable and, for the
methods considered here, the reduced first derivatives of g(y, u) are required.

1floating point operations

11

2.1.1 Implicit state solution and constraint sensitivities

The set of nonlinear equations c(y, u) = 0 can be solved for y using a variety of methods. Using the
solution method it is possible to define an implicit function

y = y(u), s.t. c(y, u) = 0. (2.5)

The definition in (2.5) simply implies that for any reasonable selection of the design variables u, the
solution method can compute the states y. Note that evaluating this implicit function requires a complete
simulation or “analysis” to be performed by the solution method. The cost of performing the simulation
solve may only be an O(ny) computation in a best-case-scenario, but for many applications the solution
complexity is much worse.

We derive the sensitivities of the states y with respect to the auxiliaries u as related through the implicit
function (2.5). We begin with a first-order Taylor expansion of c(y, u) about (y0, u0) given by

c(y, u) = c(y0, u0) +
∂c

∂y
δy +

∂c

∂u
δu + O(||δy||2) + O(||δu||2) (2.6)

where
∂c
∂y is a square IRny -by-IRny state Jacobian matrix evaluated at (y0, u0)
∂c
∂u is a rectangular IRny -by-IRnu auxiliary Jacobian matrix evaluated at (y0, u0).

In this notation, the state Jacobian matrix ∂c
∂y , for example, is defined element-wise as

(
∂c

∂y

)
(j,l)

=
∂cj

∂yl
, for j = 1 . . . ny, l = 1 . . . ny.

If the matrix ∂c
∂y exists and is nonsingular then the implicit function theorem [170, B.9] states that the

function in (2.5) exists and is well defined in a neighborhood of a solution (y0, u0). In some applications,
the matrix ∂c

∂y is always nonsingular in regions of interest. In other application areas where the selection of
state and design variables is arbitrary, the variables are partitioned into states and designs based on the
non-singularity of ∂c

∂y . Note that the only requirement for the latter case is for the Jacobian of c(y, u) to be
full rank. In any case, we will assume for the remainder of this discussion that, for the given selection of
states and designs, the matrix ∂c

∂y is nonsingular for every point (y, u) considered by an analysis algorithm.
The non-singularity of ∂c

∂y allows us to compute a relationship between changes in y with changes in u. If
we require that the residual not change (i.e. c(y, u) = c(y0, u0)) then for sufficiently small δy and δu the
higher order terms can be ignored and (2.6) gives

∂c

∂y
δy +

∂c

∂u
δu = 0. (2.7)

If ∂c
∂y is nonsingular then we can solve (2.7) for

δy = −∂c

∂y

−1 ∂c

∂u
δu. (2.8)

12

The matrix in (2.8) represents the sensitivity of y with respect to u (for c(y, u) = constant) which defines

∂y

∂u
≡ −∂c

∂y

−1 ∂c

∂u
. (2.9)

We refer to the matrix ∂y
∂u in (2.9) as the direct sensitivity matrix.

2.1.2 Reduced gradients

The major drawback of analysis approaches that rely on the finite-difference reduced gradient is that nu
state solves are required per analysis iteration and the accuracy of the computed optimal solution is
degraded because of the truncation error involved with finite differences.

An alternative approach is to compute the reduced gradient in a more efficient and accurate manner. The
exact reduced gradient of ĝ(u) = g(y(u), u) is

∂ĝ

∂u
=

∂g

∂y

∂y

∂u
+

∂g

∂u
∈ IRng×nu , (2.10)

where
∂g
∂y is a IRng×ny auxiliary Jacobian of g(y, y) w.r.t. y evaluated at (yk, uk),
∂g
∂u is a IRng×nu auxiliary Jacobian of g(y, y) w.r.t. u evaluated at (yk, uk),

and ∂y
∂u is the direct sensitivity matrix defined in (2.9). By substituting (2.9) into (2.10) we obtain

∂ĝ

∂u
= −∂g

∂y

∂c

∂y

−1 ∂c

∂u
+

∂g

∂u
. (2.11)

The first term in (2.11) can be computed in one of two ways. The first approach, called the direct sensitivity

approach, is to compute the direct sensitivity matrix ∂y
∂u = − ∂c

∂y

−1 ∂c
∂u first and then compute the product

∂g
∂y

∂y
∂u . The advantage of this approach is that many simulation codes are already setup to solve for linear

systems with ∂c
∂y since they use a Newton-type method to solve the simulation problem. The disadvantage

of the direct sensitivity approach is that to form ∂y
∂u , nu linear systems must be solved with the Jacobian ∂c

∂y

for each column of ∂c
∂u as a right-hand side. This is generally a great improvement over the finite-difference

reduced gradient in that the solution of a nu linear systems with ∂c
∂y is cheaper than a full simulation to

evaluate y(u) and the resulting reduced gradient is much more accurate.

The second approach for evaluating (2.11), called the adjoint sensitivity approach, is to compute

P =
∂c

∂y

−T ∂g

∂y

T

∈ IRny×ng (2.12)

first, followed by the formation of the product PT ∂c
∂u . The columns of P are called the adjoint variables (or

the Lagrange multipliers in an optimization method). The advantage of this approach is that only ng solves

with the matrix ∂c
∂y

T
are required to compute the exact reduced gradients. The disadvantage of the adjoint

sensitivities approach is that simulation codes which solve linear systems with the Newton Jacobian ∂c
∂y

13

may not be able to solve a linear system efficiently with its transpose. It can be a major undertaking to
revise a simulation code to solve with transposed systems.

In summary, adjoint approaches are generally more efficient than direct approaches when there there are
more auxiliary variables then auxiliary response functions (i.e. nu > ng). For the majority of the analysis
methods that we consider in this work nu � ng and therefore adjoint methods are typically much more
efficient than direct methods.

2.2 Transient sensitivities

Sensitivities for transient problems are more complicated to describe than for steady-state problems.
However, if we initially consider a restricted class of problems, we can cleanly present the mathematics
involved. Here we consider transient state problems of the form

c

(
∂y(t)
∂t

, y(t), u, t

)
= 0, t ∈ [0, tf] (2.13)

y(0) = y0 (2.14)

where
y(t) ∈ IRny are the transient state variables,
u ∈ IRnu are steady-state auxiliary variables, and
c(∂y(t)/∂t, y(t), u, t) : IR(2ny+nu+1) → IRny are the state DAEs.

Note that while the auxiliary variables u in (2.13)–(2.14) are independent of time, there are also transient
problem formulations where the auxiliary variables are time dependent. In fact, some of the applications
reported in the next section have time-dependent auxiliary variables. Our reason for focusing on
time-independent auxiliary variables in this section is to simplify the mathematics and direct sensitivities
for transient problems. However, the basic concepts for time-independent and time-dependent auxiliary
variables are similar and therefore we focus on time-independent auxiliary variables.

For transient problems of this type, auxiliary response functions can be formulated by adding a set of
auxiliary differential variables and DAEs

h

(
∂w(t)

∂t
, w(t), y(t), u, t

)
= 0, t ∈ [0, tf] (2.15)

w(0) = w0 (2.16)

where
w(t) ∈ IRnw are auxiliary differential variables,
h(∂w(t)/∂t, w(t), y(t), u, t) : IR(2nw+ny+nu+1) → IRny are the auxiliary DAEs,

and a set of auxiliary response, or observable, functions

g(y(tf), w(tf), u) (2.17)

14

where
g(y(tf), w(tf), u) : IR(ny+nw+nu) → IRng .

The purpose of the auxiliary DAEs in (2.15)–(2.16) are typical and the allow the accumulation of some set
of integrated quantities needed to evaluate the auxiliary response functions in (2.17).

2.2.1 Implicit DAE solutions and reduced auxiliary response functions

The state and auxiliary DAEs in (2.13)–(2.14) and (2.15)–(2.16) can be integrated simultaneously from the
initial conditions, using some integration method, to compute the final state y(tf) and auxiliary w(tf) DAE
solutions. Under appropriate conditions, this integration method can define the implicit final state function

y(tf) = y(tf , u) (2.18)

and the implicit final auxiliary function

w(tf) = w(tf , u). (2.19)

These implicit DAE solution functions y(tf , u) and w(tf , u) allow the definition of the reduced auxiliary
response functions

ĝ(u) = g(y(tf , u), w(tf , u), u) (2.20)

where
ĝ(u) : IRnu → IRng .

It is these reduced auxiliary response functions ĝ(u) that most analysis methods are concerned with and for
which derivatives must be computed. The reduced derivative computations with ĝ(u) are described in the
next section.

2.2.2 Reduced auxiliary response function derivatives

The analysis methods require the first derivative ∂ĝ/∂u of the reduced auxiliary response function ĝ(u).
While finite-difference methods can always be used to approximate these derivatives, we focus on more
efficient and accurate methods here. The chain rule of vector-function differentiation gives this reduced
derivative as

∂ĝ

∂u
=

∂g

∂y

∂y(tf)
∂u

+
∂g

∂w

∂w(tf)
∂u

+
∂g

∂u
∈ IRng×nu . (2.21)

The first two terms in this reduced gradient, involving the implicit functions y(tf) and w(tf), dominate the
computation. Just as in the steady-state case, these terms can be computed using either a direct approach or
an adjoint approach. In the direct approach, the direct sensitivities ∂y(tf)/∂u and ∂w(tf)/∂u are
computed first using a forward integration and then multiplied from the right by ∂g/∂y and ∂g/∂w
respectively. In the adjoint approach, a new set of adjoint DAEs must be formulated and solved. These
methods raise a number of challenging issues.

15

2.2.3 Transient direct sensitivities

The direct sensitivities of the state y(t) and auxiliary w(t) DAE solutions required in (2.21) can be
obtained by simply differentiating (2.13)–(2.14) and (2.15)–(2.16) with respect to u. This differentiation
yields the classic direct sensitivity equations

∂c

∂ẏ

(
∂

∂t

∂y(t)
∂u

)
+

∂c

∂y

(
∂y(t)
∂u

)
= − ∂c

∂u
, t ∈ [0, tf] , (2.22)

∂y(0)
∂u

= 0, (2.23)

∂h

∂ẇ

(
∂

∂t

∂w(t)
∂u

)
+

∂h

∂w

(
∂w(t)
∂u

)
= −∂h

∂y

(
∂y(t)
∂u

)
− ∂h

∂u
, t ∈ [0, tf] , (2.24)

∂w(0)
∂u

= 0, (2.25)

where ẏ and ẇ are abbreviations for ∂y(t)/∂t and ∂w(t)/∂t respectively.

The state (2.22)–(2.23) and auxiliary (2.24)–(2.25) direct sensitivity DAEs are integrated together with the
state (2.13)–(2.14) and auxiliary (2.15)–(2.16) DAEs. Because all of these DAE equations are integrated
together, only local time-step storage is required. Note that the differential variables ∂y(t)/∂u and
∂w(t)/∂u appear linearly in the equations. The dominant cost of the sensitivity computation is the nu
independent DAEs represented in (2.13)–(2.14) that must be solved. It is this set of equations that gives the
direct approach its O(nu) complexity.

Within each time step iteration, approximations for the Jacobians ∂c/∂ẏ, ∂c/∂y and ∂c/∂u for the main
simulation code are required. If finite differencing is used, then direct sensitivity methods can be
implemented using just what implicit transient simulation codes already provide. The simulation code is
required to give up control of its time stepping algorithm and thereby just becoming a slave to the transient
direct sensitivity solver. Note that any integration method can be used to solve the transient direct
sensitivity equations, including explicit methods. For an explicit time integration method, only the action
of the Jacobian matrices ∂c/∂ẏ and ∂c/∂y onto arbitrary vectors are required and these can be relatively
cheaply (although inaccurately) computed using directional finite differences. In addition, higher levels of
parallelism can be utilized where blocks of different direct sensitivities in ∂y(t)/∂u and ∂w(t)/∂u are
solved on different clusters of processors. As long as there are sufficiently many right-hand sides to solve
and the computational load is well balanced, then the overall parallel efficiency should be very good and
should result in dramatic reductions in wall-clock time.

2.2.4 Transient adjoint sensitivities

The reduced gradient in (2.21) can also be computed using an adjoint approach. Unlike the steady-state
case, we will not present a complete derivation of the adjoint approach since the concepts involved are
more complicated. Instead, here we simply show the relevant equations in order to provide a context for the
discussion that follows.

The adjoint approach for computing the reduced gradient in (2.21), after the solution of the forward

16

problem, begins with the solution of the adjoint equations

∂h

∂ẇ

T ∂Q

∂t
+
[

d

dt

∂h

∂ẇ

T

+
∂h

∂w

]
Q = 0, t ∈ [0, tf], (2.26)(

∂h

∂ẇ

T

Q

)∣∣∣∣
t=tf

=
∂g

∂w(tf)

T

(2.27)

∂c

∂ẏ

T ∂P

∂t
+
[

d

dt

∂c

∂ẇ

T

+
∂c

∂w

]
P = −∂h

∂ẏ

T ∂Q

∂t
−
[

d

dt

∂h

∂ẏ

T

+
∂h

∂y

]
Q, t ∈ [0, tf], (2.28)(

∂c

∂ẏ

T

P

)∣∣∣∣
t=tf

=
∂g

∂y(tf)

T

(2.29)

where
Q ∈ IRnh×ng are the adjoint variables for the auxiliary DAEs, and
P ∈ IRny×ng are the adjoint variables for the state DAEs.

The above adjoint equations can be derived in a number of ways but, in essence, the solution of these
equations gives the sensitivity in the auxiliary functions of interest with respect the perturbations in the
DAE equations. Note that the above adjoint DAEs have final conditions at t = tf and therefore must be
integrated from the final time backwards. The adjoint DAE in (2.28) is expressed in such a way as to
emphasize that it depends on the adjoint solution Q. Hence, the adjoint for the state equation in (2.28)
depends on the independent solution to the adjoint for the auxiliary DAE in (2.26) which is just the
opposite to the relationship between the state (2.13) and auxiliary (2.15) DAEs.

Also note that the adjoint equations require access to the state and auxiliary DAE solutions y(t) and w(t).
This need to access the forward DAE solutions during the backward adjoint solve is perhaps the most
challenging aspect to an adjoint approach for large scale transient problems. This is a critical issue that is
discussed later chapters.

Given that the adjoint solutions P (t) and Q(t) are computed, the reduced auxiliary response derivative in
(2.21) is evaluated as

∂ĝ

∂u
= −

∫ tf

0

(
P T ∂c

∂u
+ QT ∂h

∂u

)
dt +

∂g

∂u
. (2.30)

The adjoint solution variables Q and P need not be stored for the entire time domain. This is because the
integrals in (2.30) can be computed while the adjoint equations in (2.26)–(2.29) are being integrated
backward and therefore the integrators only have to store the typical local time-step information. What is
significant, of course, about the adjoint approach is that the dominate computation of the ng simultaneous
state adjoint DAEs in (2.28)–(2.29) can be computed with O(ng) complexity, independent of the number of
auxiliary variables nu.

17

Chapter 3

Offline/Online QP Solver Stratgies for Real
Time Inversion

3.1 Introduction

Sensitivity computations are an important part of gradient-based optimization algorithms and, as described
in the previous chapter, a variety of strategies can be considered to calculate the underlying derivatives. In
this chapter, large-scale direct sensitivities are exploited to solve an inversion problem of source terms on
the domain boundary subject to steady-state convection diffusion by matching only a small set of
observations. This problem formulation can be applied to a variety of problems such as identifying
contamination events or controling temperature in heating and ventilation systems. The goal of the
inversion problem is to minimize the difference between the observations and predictions. Because the
number of observations will typically be less than the possible discretization points on the boundary, the
problem is ill-posed and needs to be regularized, which amounts to an additional penalty type term in the
cost functional. Even though the regularization term causes a smoothing of the reconstruction, this
formulation has proven to be effective in solving inversion problems [206, 7]. In our numerical
experiments, a forward simulation with specified initial conditions and source terms is used to extract
observations from a few locations on the boundary and then fed into the inversion problem as the target
values.

Real-time performance is a critical goal in order for an inversion of contamination events or temperature
control to have any practical use. A variety of approaches are discussed in this report to solve large-scale
optimization problems (and compute the underlying derivatives) as efficiently as possible, but here we
focus on decomposing the optimization problem into offline and online calculations. The general idea is to
recognize that a significant portions of the calculations do not change within the optimization solution
procedure and can therefore be extracted as offline computations. What remains is then a subset of the
overall computation and can be performed online with real-time performance. We describe a tailored
solution of a special class of quadratic programming (QP) problems that arise in least-squares problems.
The offline computation involves the formation of a compressed state/source sensitivity matrix. This
computation can be performed using a direct or adjoint approach and underscores the need for such
computations. The online computation uses the precomputed compressed state/source sensitivity matrix to
compute a reduced gradient and reduced Hessian and solve a reduced QP online.

18

The proposed offline/online reduced QP method is demonstrated on a prototype problem where a
contamination event is simulated in an airport terminal. The transport of the chemical is based on the
steady-state convection-diffusion equations and the velocities are calculated through a steady-state Navier
Stokes model. A least-squares formulation attempts to reduce the difference between sparse concentration
information and simulated values in an attempt to reconstruct the location and character of the
contamination event. The main target application for this specialized QP method is the repeated online
solution of inversion problems involving large-scale linear state constraints. The algorithmic strategy is
presented in discrete and general form to emphasize the applicability of the formulation to other problems
with similar characteristics.

3.1.1 Statement of the Problem: General QP Formulation

The offline and online calculation strategy is based on the recognition that our particular inversion problem
can be formulated as a Quadratic Programming (QP) problem in which the cost functional is quadratic and
the contraints are linear. This class of problems can take advantage of standard solution methods [92, 174].
To achieve real-time performance, however, we consider a new solution approach for QPs of the following
form:

Minimize 1/2(y − ỹ)T Qy(y − ỹ) + 1/2u
T Quu (3.1)

Subject to Cy + Nu = 0 (3.2)

uL ≤ u ≤ uU (3.3)

where
y ∈ IRny are state variables,
u ∈ IRnu are design (or inversion) variables,
ỹ ∈ IRny is some target state vector,
uL, uU ∈ IRnu are simple bounds on u,
Qy ∈ IRny×ny is a diagonal positive semi-definite matrix with ns non-zero entries,
Qu ∈ IRnu×nu is a positive definite matrix,
C ∈ IRny×ny is a nonsingular unsymmetric matrix known as the state Jacobian, and
N ∈ IRny×nu is a rectangular matrix known as the design Jacobian.

In the context of an inversion problem, this formulation solves for the inversion variables u that give the
best possible match of the linear state model (3.2) for y to some target data ỹ. Only incomplete information
about the target state in ỹ is known and these are selected by the nonzero entries along the diagonal of Qy.
In this case, the number of data points ns known in the target state ỹ is less than the number of inversion
parameters nu. This gives rise to an ill-posed inversion problem where an entire subspace of solutions for u
exists. Some type of regularization is therefore added to the objective function in the form of the
positive-definite matrix Qu that results in a well-posed QP with a unique solution for u. For problems with
many inversion parameters, enforcing physical bounds on the inversion parameters (for example,
non-negative concentrations) in (3.3) result in much better inversion results in terms of quality of inversion.
Instead of inverting for every location in a 3D domain, we consider only the boundary of the 3D domain

19

and in addition we parametrize the domain so that we can control the final number of inversion parameters.
We focus therefore on the solution of QPs where nu and ns are not excessively large (i.e. nu and ny are a
few thousand or less).

In addition, to achieve real-time performance we recognize that the data in Qy and ỹ change from one QP
to the next and not the state model matrices C or N . We are also interested in using approaches that allow
for a fast solution time for repeated QP subproblems. It should be noted that for most problems, even a
single iterative solve with the full state Jacobian C (or its adjoint) can not be performed online in real-time.
Note that only the ns entries in ỹ selected by the nonzero diagonals of Qy are significant. We also assume
that the structure of Qy (that is, which diagonals are zero or nonzero) does not change from one QP to the
next. What is critical about this approach is that the state equation matrices C and N are constant for all
QPs that we consider. This allows one to perform perhaps some very expensive computations with C and
N offline and then use these computed quantities in the repeated online solution of the QPs.

3.2 Reduced QP problem

For the class of QPs considered here, it is useful to form a reduced QP where the state variables y and the
linear equality constraints in (3.2) are eliminated from the problem. It is this linear elimination that allows
a significant portion of the computation to be performed offline and therefore will be the key to the success
of the repeated online solution of this class of QPs.

The elimination of the linear equality constraints in (3.2) gives rise to the following implicit state function

y(u) = Du (3.4)

where
D = −C−1N ∈ IRny×nu is known as the direct sensitivity matrix.

The direct sensitivity matrix D can be computed offline since it does not depend on the data in Qy or ỹ.

To obtain the reduced QP, y(u) is substituted into (3.1) to obtain

Minimize gT u + 1/2u
T Gu (3.5)

Subject to uL ≤ u ≤ uU (3.6)

where
g = −DT Qyỹ ∈ IRny is the reduced gradient, and
G = DT QyD + Qu ∈ IRny×ny is the reduced Hessian.

It is this reduced QP formulation in (3.5)–(3.6) that is the focus of the offline/online decomposition
described in the sequel.

20

3.3 Decomposition of Reduced QP into Offline and Online Subproblems

Here we consider a decomposition of the reduced QP in (3.5)–(3.6) into offline and online subproblems to
achieve real-time performance. An important concept of the approach is to realize that not all the values of
the direct sensitivity matrix D are required in the optimization calculation. In the inversion problem, only
the state concentration values at sensor locations need to be extracted, stored and then read in during the
on-line computation. We therefore need to define an operator E that depends on the sensor locations and
can map the required rows of D to a more compact operatorD̂. This avoids large storage requirements and
IO costs during the online calculation process.

We provide a general overview of the decomposition algorithm and further define the individual
calculations in subsequent sections. The general algorithm (which refers to some quantitiesD̂, Q̂y and ŷ
that are defined later) is as follows:

Algorithm 1. OFFLINE AND ONLINE COMPUTATIONAL PROCEDURE

1. Offline Computations
- compute compressed direct sensitivity matrixD̂

2. Online Computations
- read in compressed direct sensitivity matrixD̂
- for each online QP problem
- read in compressed data Q̂y and ŷ
- assemble reduced gradient g
- assemble and factor reduced Hessian G
- solve bound constrained QP (3.5)–(3.6)

In the offline computation, an operator is defined that compresses the full direct sensitivity matrix D to a
compact matrix consisting of sensitivities of state variables only at observation points; the sensitivities of
all other state variables do not impact the optimization problem in any way. We therefore define a
scattering matrix E ∈ IRny×ns as follows:

Qy = ET Q̂yE, (3.7)

ỹ = ET ŷ, (3.8)

where
Q̂y ∈ IRns×ns is a diagonal positive definite matrix, and
ŷ ∈ IRns is a data vector.

The diagonal positive-definite matrix Q̂y contains only positive diagonals while Qy contains ns positive
diagonal entries and ny − ns zero diagonal entries. Therefore, Q̂y is the “significant” part of Qy. Likewise,
ŷ is the “significant” part of ỹ. In the sequel, Q̂y and ŷ will be referred to as the compressed data and it is
this data that changes from one QP to the next. The scattering matrix E is the same for all QP subproblems.

21

Given the above definition of the scattering matrix E and the compressed dataQ̂y and ŷ, the reduced
gradient and reduced Hessian become

g = D̂T Q̂y ŷ, (3.9)

G = D̂T Q̂yD̂ + Qu, (3.10)

where
D̂ = ED = −EC−1N ∈ IRns×nu is the compressed direct sensitivity matrix.

The next subsection describes various approaches for the offline computation of the compressed direct
sensitivity matrix D̂. This is followed Subsection 3.3.2 by a discussion of how, given a precomputed matrix
D̂, the reduced QP subproblem in (3.5)–(3.6) is formed and solved.

3.3.1 Offline Subproblem

The offline subproblem involves the precomputation of the compressed direct sensitivity matrix
D̂ = −EC−1N . This matrix can be computed by either first solving the set of nu simultaneous systems
C−1N (known as the forward approach), or by first solving the set of ns simultaneous systems C−T ET

(known as the adjoint approach). There are many factors to consider when selecting which of these two
approaches to use. Note that for some challenging applications, the number of state variables ny may be in
the millions or more and solving systems involving C and CT may require the use iterative linear solvers
(such as GMRES) on a distributed-memory massively parallel processing (MPP) computer. However,
D̂ = −EC−1N ∈ IRns×nu will always be a relatively small matrix since we are only considering
problems where nu and ns are a few thousand at most. Therefore, while the computation ofD̂ may be able
to effectively utilize a large MPP, the storage and use ofD̂ can not and a simple single-processor or
symmetric multi-processor (SMP) is sufficient for all of the online computations described below.

These two approaches, and the issues involved with each, are described in the following subsections.

3.3.1.1 Computing Compressed Sensitivities using the Forward Approach

The forward approach for computing the compressed direct sensitivity matrixD̂ = −EC−1N , which
involves first solving the nu simultaneous systems

D = −C−1N (3.11)

followed by simply selecting the rows by multiplying D̂ = ED, is potentially the most efficient approach
for steady-state and transient problems when nu < ns. However, even when nu > ns, the forward
approach may still be preferable since it only requires forward solves.

For a steady-state problem, solving C−1N requires a single block iterative linear solve with nu

simultaneous right-hand sides. For a transient problem, solving C−1N actually involves solving a set of nu

simultaneous linear ODEs from the initial time to the final time. For both the steady-state and transient
problems, block linear solvers, such as block GMRES, may greatly reduce the cost of these expensive
offline computations.

22

3.3.1.2 Computing Compressed Sensitivities using the Adjoint Approach

The adjoint approach for computing the compressed direct sensitivity matrixD̂ = −EC−1N , which
involves first solving the ns simultaneous adjoint systems

T = C−TET (3.12)

followed by simply multiplying D̂ = −T TN , is probably the more efficient approach when ns < nu. If an
iterative linear solver such as GMRES is being used, then solving the adjoint system requires adjoint
multi-vector products of the form CT V . Note that there is no cheap way of approximating these adjoint
products using directional finite differences.

For a steady-state problem, solving C−TET requires a single block adjoint iterative linear solve with ns

simultaneous right-hand sides. For a transient problem, a set of ns simultaneous linear ODEs must be
integrated from the final time backwards to the initial time. Since the adjoint sensitivity equations are linear
and do not depend on the state, no transient state information needs to be stored and only local time-step
information is needed. For both the steady-state and transient problems, block linear solvers, such as block
GMRES, may greatly reduce the cost of these expensive offline adjoint computations.

3.3.2 Online Subproblem

The solution of the online problem first involves forming the reduced gradient g (3.9) and reduced Hessian
G (3.10) given the compressed data Q̂y, and ŷ, and the precomputed compressed direct sensitivity matrix
D̂. Once these quantities are formed, the reduced bound-constrained QP (3.5)–(3.6) is then solved. All of
these online calculations are relatively computationally inexpensive (compared to the offline computation)
and can therefore be performed on a single processor or multi-processor SMP shared-memory machine. On
an SMP, all of the level-2 and level-3 BLAS and LAPACK operations performed can exploit more than one
thread of execution and therefore provide some parallel speedup.

The computation of the reduced gradient ĝ = D̂T Q̂y ŷ is straightforward and relatively cheap. Computing
ĝ only requires an O(ns) diagonal scaling to form Q̂y ŷ followed by an O(nuns) level-2 matrix-vector
multiplication ĝ = D̂T (Q̂yŷ). The cost of this computation is in the noise of the CPU time of the other
online computations.

The reduced Hessian G = D̂T Q̂yD̂ + Qu is formed online as follows. First, the diagonal matrix Q̂y is
decomposed into

Q̂y = Q̂
1/2
y Q̂

1/2
y (3.13)

by simply taking the square root of the diagonal ofQ̂y (which gives real components since Q̂y is positive
definite). This is only an O(ns) operation and is therefore very fast.

Next, the matrix
Ĵ = Q̂

1/2
y D̂ (3.14)

is formed by simply scaling the rows of D̂ using the diagonal entries of Q̂
1/2
y . This is an O(nsnu) operation.

After Ĵ is calculated, the O(nu(ns)2) level-3 BLAS operation

Ŝ = ĴT Ĵ ∈ IRnu×nu (3.15)

23

is performed. For problems where ns � nu (for example with least-squares problems), this computation is
the dominate cost of the online solution of the reduced QP. For problems where ns < nu (which is always
the case in an ill-posed inversion problem for instance) thenŜ will be singular with at least nu − ns zero
eigenvalues and this computation will not be a dominate component of the online solution.

Once the matrix Ŝ is formed, it is added to the matrix Qu to form the reduced Hessian

G = Ŝ + Qu (3.16)

which is an O(n2
u) operation. Note that since Ŝ is positive semi-definite and Qu is positive definite, then G

is guaranteed to be positive definite. However, the conditioning of G my be very poor ifŜ is singular and
dominates Qu.

Finally, the active-set QP solver used to solve (3.5)–(3.6) requires many solves with G and this is facilitated
by first performing an O(n3

u) Cholesky factorization of G. Of all of the online computations described up
to this point, this O(n3

u) Cholesky factorization is by far the most expensive when ns � nu.

After the reduced gradient g has been formed and the reduced Hessian G has been calculated and factored,
then the reduced QP subproblem (3.5)–(3.6) can be solved. There are many different approaches to solving
such a QP but the one used in the results reported in Section 3.4 was QPSchur [26]. QPSchur solves convex
QPs (that is, QPs where the Hessian is positive definite) using a dual method that starts with the
unconstrained minimizer and then adds violated inequality constraints until the solution is found. Each
addition to the working set involves at least one O(n2

u) level-2 BLAS backsolve with the Cholesky factors
of G. Therefore, the online cost of solving a QP with nact active inequality constraints is at least
O(n2

unact). Note that the number of QP iterations can easily exceed nu and each of these iterations can
only utilize level-2 BLAS. Therefore, even through the number of flops in the QP solve is still usually just
O(n3

u), the actual runtime can be much higher than the O(n3
u) Cholesky factorization of G which can

utilize more efficient level-3 BLAS. Hence, if nact is moderately large, then QPSchur will dominate the
online solve.

3.4 Example Application: Source Inversion for Steady-State
Convection-Diffusion in a 3D Airport Terminal

Here we describe a steady-state inversion problem with a 3D model of an airport terminal. The goal of the
inversion is to attempt to invert for the location and intensity of a chemical, biological or radiological
release given sparse sensor data. In these scenarios, it is critical to be able to quickly (in a matter of
seconds) invert for the source location of a possible terrorist attack so that remediation procedures can be
quickly put into place.

The model used for the results in this section was that of an airport terminal shown in Figure 3.1. The
governing equations were comprised of a finite-element discretization of the convection-diffusion
equations. The velocity field is calculated (offline) through a Navier Stokes solver with turbulence
modeling. The resulting velocity is field v is based on inflow and outflow setting for a certain operating
condition, which is assumed to be constant during the inversion calculation. The transport equation for

24

Streamlines

Example contaminant forward solution

Outlets

InletsExample contaminant source

Figure 3.1. Two-D cross-section of the 3D airport terminal model. Also
shown is an example flow pattern and contaminate release simulation.

contamination concentration y in a domain Ω is given by the standard convection-diffusion equation:

−k∆y + v · ∇y = 0, (3.17)

y(0) = y0 on Ω, (3.18)

∂y/∂n = u on ΓN , (3.19)

∂y/∂n = 0 on ΓD (3.20)

where k > 0 is the molecular diffusion (assumed constant), ΓN the portion of the boundary where the
source u is injected, and ΓD is the portion of the boundary where no source injection is allowed.

Applying a standard first-order finite-element discretization to the week form of the PDE gives the linear
state equations in (3.2). Both the Navier Stokes and convection-diffusion equations were implemented in a
production CFD code (MPSalsa). For additional details the intereted readers is referred to Shadid et
al. [131]

In this model, possible source locations included only the bottom floor. The source was discretized using
evenly spaced source locations. The chosen source discretization of the bottom floor neglects the
possibility of the source emanating from other locations in the domain. While a more general source
discretization could have been used, the choice of using only the bottom floor was for simplicity and to
limit the number of inversion parameters nu.

Figure 3.2 shows the inversion results compared to the input source field for an example run where
nu = 100 inversion parameters were used. This figure clearly shows that the inverted source matches the
input source very well. Including the simple bounds (3.6), where uL ≈ 0.0, had a large impact on the
quality of the solution and were critical for the qualitative accuracy of the inversion results.

Table 3.1 shows the wall-clock CPU times for the offline and online subproblems for nu = 100 and
nu = 500 inversion parameters. These timings show that while the cost of computing the compressed
direct sensitivity matrix D̂ offline can be significant, the online cost is competitively small. In fact, the
online inversion for only nu = 100 took less that 0.05 seconds! In addition, the cost for the online

25

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

position

S
o

u
rc

e
co

n
ce

n
tr

at
io

n
target
inversion

Figure 3.2. Plots for a 2D cross-section of the top bottom floor in the 3D
airport terminal model (shown in Figure 3.1) of input source and inverted
source for nu = 100 discretized inversion parameters.

Computation nu = 100 nu = 500
Compute D̂ offline 28.03 min 137.68 min
Compute/factor G online 0.016 sec 0.14 sec
Solve reduced QP online 0.038 sec 2.25 sec

Table 3.1. Offline and online times for inversion of 3D airport terminal
model. Offline computation of compressed direct sensitivity matrix D̂
performed using four nodes of a 1.7 MHz Beowulf cluster. Online com-
putations performed on a single 1.7 MHz processor of same Beowulf
cluster.

26

inversion for nu = 500 took less than 2.5 seconds, but here one can see the increase in online complexity
as nu increases. Both of these QP subproblems had many active inequality constraints and therefore the
online cost was dominated by the active-set QP solver QPSchur. When there are many active inequality
constraints at the solution then QPSchur scales at about O(n3

u) which limits the applicability of this
approach. Relative to the nu = 100 case, a cubic increase in solution complexity would suggest a CPU
time of 0.038(500/100)3 = 4.75 seconds for nu = 500; however, the actual QPSchur time was only 2.25
seconds. Clearly there is some economy of scale occurring in QPSchur (i.e., same overhead but increased
flops resulting in overall faster flop rate) what will tapper off as nu increases.

3.5 Summary and Conclusions

Here described is an approach for decomposing the repeated solution of a class of QP problems into offline
and online subproblems. The general formulation for the class of QPs we consider encompasses several
different types of inversion and least-squares problems with both steady-state and transient state models.
Our method exploits the properties that each QP to be solved has the same linear state constraint matrices
C ∈ IRny×ny and N ∈ IRny×nu , and has a diagonal objective function Hessian Qy ∈ IRny×ny with the
same nonzero structure along the diagonal (which is represented as a mapping matrix E ∈ IRns×ny). We
exploit these properties by splitting the computation of the solution of the QP into offline and online
components. This approach allows for the “real time” solution of a relatively broad class of these QPs
using modest computing resources (at least for the online computation).

Offline, a compressed sensitivity matrix D̂ = −EC−1N ∈ IRns×nu is computed that only depends on the
state constraint matrices C and N , and the structure of the state objective Hessian matrix represented by E.
The offline formation of D̂ can be very computationally expensive, can use either forward or adjoint linear
solver methods, and can be computed using large-scale iterative linear solvers on a distributed-memory
super computer.

The cost of the offline computation of D̂ scales as O(nu) for the forward approach and as O(ns) for the
adjoint approach. This means that for typical inversion problems where nu > ns that adjoint methods may
be preferable.

Each particular online QP can have a different compressed diagonal objective Hessian matrix
Q̂y ∈ IRns×ns , compressed target state vector ŷ ∈ IRns , and regularization Hessian matrix Qu ∈ IRnu×nu .
Given this data, the reduced gradient g = D̂T Q̂yŷ ∈ IRns and the reduced Hessian
G = D̂T Q̂yD̂ + Qu ∈ IRns×ns are formed online and then a bound-constrained reduced QP subproblem
with nu variables is solved.

The cost of the online computation scales in general as O(n3
u) and it independent of the size of the state

space ny. The online computations never require even a single iterative linear solve involving the state
Jacobian C or its adjoint CT . Most notably, the online problem can be solved on a single processor
machine.

The above described approach was demonstrated on a steady-state inversion problem involving a 3D
airport terminal model where the state constraint matrices were produced using the CFD code MPSalsa.
Inversion results where reported for nu = 100 and nu = 500 inversion parameters. While the offline cost
of computing the compressed sensitivity matrixD̂ was considerable (e.g. one hour on four processors of a
Beowulf cluster for nu = 500), the online costs were less than 0.05 and 2.30 seconds for nu = 100 and

27

nu = 500, respectively, on a single 1.7 MHz Linux workstation.

These results clearly demonstrate that repeatably solving large-scale QP problems of the type considered
here in “real time” is very tractable using the proposed offline/online approach given current computer
technology.

3.6 Recommendations and Future Work

Several different avenues to pursue to continue this work which are described below.

• The offline/online decomposition approach for solving inversion QPs was demonstrated on a
steady-state model of an airport terminal. However, the principles of the proposed approach are
equally applicable for transient state models as well. Transient problems will require the use of time
integrators for the forward (solving forward in time) and adjoint (solving backward in time)
computation of the compressed sensitivity matrixD̂. However, once D̂ is computed, it can be used in
the online computations in exactly the same way as for the steady-state case. Another challenge for
transient problems will be in keeping the total number of transient inversion parameters nu from
getting too large which would increase the cost of the O(n3

u) online computations.

• For a large number of inversion parameters nu (e.g. for transient problems), the O(n3
u) cost of

solving the online reduced QP subproblem will become prohibitive and threaten the “real time”
capability to solve these problems. In this cases, more attention needs to be focused on the solution
of the reduced QP subproblem.

Possible areas to pursue include:

– The use of approximate reduced Hessians instead of recomputing them from scratch every
time. This approach could be particularly effective when solving a sequence of related QPs for
a transient inversion problem.

– The use of warm-start estimates of the optimal active-set of inequality constraints from the last
QP subproblem.

– The use of a primal QP solver instead of the dual QP solver QPSchur. A primal QP solver may
allow for better premature termination of the the QP algorithm that still results in sufficient
quality inversion results.

– The use of an interior-point algorithm to approximately solve the reduced QP. An interior-point
method would require an O(n3

u) Cholesky factorization at each interior-point iteration but each
of these factorizations would utilize level-3 BLAS for peak performance. Premature
termination of the algorithm would guarantee that the bounds in (3.6) would not be violated.

• The computation of the compressed sensitivity matrixD̂ can consume considerable computational
resources, especially for transient problems. While this computation does not impact the cost of the
online computations it does represent a real cost that can be a hindrance if it is too expensive. The
forward and adjoint approaches that solve for D = C−1N ∈ IRny×nu and T = C−TET ∈ IRny×ns ,
respectively, can both take advantage of block linear solver methods such as block GMRES. The use
of a block solver may reduce the considerable cost of the offline computations by an order of
magnitude or more in some cases.

28

Chapter 4

Large Scale Inversion of a Contaminant in a
Regional Model using Convection-Diffusion

4.1 Introduction

We are interested in accurately characterizing airborne contamination events in regional models under the
assumption that sparse observation data is available spatially and temporally. In particular, we aim to invert
for initial conditions of contaminants from observations, using a convection-diffusion model for their
transport. These types of problems arise from characterization of pollutants in the atmosphere,
unintentional catastrophic accidents involving chemical plants, or terrorist type release of chemical or
biological agents. Although adjoint formulations have been developed to characterize the sensitivity of
chemical concentration with respect to source terms [156, 137, 132, 67], very little has been done to
reconstruct the initial conditions via the solution of an inverse problem.

In the previous chapter the use of direct sensitivities was successfully demonstrated for a source inversion
problem. The number of inversion parameters, however, was limited to O(100). In the case of a
contamination inversion in a large regional model setting, the number of inversion parameters may be
several orders of magnitude greater than that of the internal airflow problem. More efficient methods must
therefore be developed to enable large-scale inversion in time scales appropriate for mitigation procedures.
Two options can be considered: 1) full space approaches, and 2) reduced space method using adjoints.

Full space methods have been proven to efficiently scale to extremely large design spaces, even as large as
the size of the underlying discretization [36]. Unfortunately, for a time dependent PDE constraint, the
resulting KKT matrix involves the entire space–time discretization, is indefinite, and is generally very
ill-conditioned.

Alternatively, we consider a reduced space method, which is equivalent to a block elimination on the three
PDEs that comprise the first order optimality conditions: the state equation, the adjoint equation, and the
inversion equation. By block-eliminating the state and adjoint variables, we are left with a reduced system
in the space of just the inversion variables, which represent the initial condition field and are therefore of
dimension of just the spatial discretization. The coefficient matrix of this system — the reduced Hessian —
is dense as a result of the block elimination, and therefore iterative methods that require only the
matrix-vector product must be used. These can be formed at each iteration by exploiting the structure of

29

the reduced Hessian to solve a pair of forward–adjoint convection diffusion problems. Not only does the
reduced Hessian eliminate the time dimension of the KKT system, but with appropriate regularization it is
also positive definite. However, for large systems, a scalable preconditioner will be necessary, which is
particularly challenging when the reduced Hessian cannot be formed.

Our ultimate goal is to invert in real time for initial conditions using a well resolved terrain model while
capturing the appropriate physics. We have organized our investigation into several phases: (1) develop
inversion algorithms using a steady state velocity field from a laminar Navier Stokes solver and
contaminant transport dynamics from a scalar convection-diffusion model, (2) prototype our algorithms for
a large regional model with realistic topography, (3) incorporate additional physics into the model to
address turbulence, which would require the ability to use unsteady velocity fields in the convection
diffusion inversion algorithm, and (4) incorporate additional climate physics and invert for the velocity
field from pointwise observations. Our investigations thus far have been limited to the first two items as we
have worked on developing scalable inversion techniques. The representation of the underlying physics
associated with contaminant transport in a regional model is simplified, but it is sufficiently complex
(realistic terrain with Navier-Stokes-based velocity field, convection-diffusion in three dimensions plus
time) to stress the inversion capabilities. To the best of our knowledge large scale inversion of contaminant
transport in a regional model has not been attempted.

In previous work a formulation was developed to demonstrate inversion in simplified geometries that
assumed a simple velocity field [7]. The purpose was to primarily develop inversion capabilities and
investigate associated issues, such as regularization, convergence, and general computational issues. In this
work, we extend our investigation to three dimensional time-dependent transport, reduced space methods,
and realistic terrain topography. This chapter will first present our mathematical formulation of the time
dependent convection diffusion equations, followed by the development of the inversion algorithm. The
numerical results section discusses computational experiments for evaluating the effect of sensors and
regularization constants, in addition to the effects of topography.

4.2 Convection-Diffusion and First Order Optimality Conditions

In order to reconstruct initial conditions using sparse concentration observations, we formulate a
regularized least squares objective function constrained by convection diffusion. The goal is to reconcile
the differences between observed and simulated concentration values. The strong form of the formulation
is presented below:

min
c,c0

∑
j

∫
Ω

∫ T

0
(c − c∗)2δ(x − xj) dx dt +

β

2

∫
Ω

∇c0 · ∇c0 dx (4.1)

s.t. ∂c/∂t − k∆c + v · ∇c = 0 in Ω × (0, T), (4.2)

c(0) = c0 on Ω, (4.3)

∂c/∂n = 0 on ΓN × (0, T), (4.4)

c = 0 on ΓD × (0, T) (4.5)

30

where c is the state variable or concentrations in this application context, c∗ is the target concentration
(pre-computed from a forward simulation for our numerical experiments; otherwise c∗ corresponds to
sensor readings), the delta function represents the location of the observations, the constant β determines
the contribution of the regularization term, and c0 is initial concentration or inversion variable.

The minimization of the objective function is subject to convection-diffusion where the velocity field v is
calculated from a Navier Stokes model. The diffusion constant is specified as k. ΓN denotes the portion of
the boundary with homogeneous Neumann conditoins, and ΓD denotes the portion of the boundary with
homogeneous Dirichlet conditions. In follow-on work we will employ a turbulent Navier Stokes model to
invert for velocities given sparse observations. At this algorithmic development stage of the project,
however, we assume known velocity boundary conditions and use a steady state Navier Stokes system to
calculate the velocity field.

For the remainder of the mathematical presentation we follow a discretize-then-optimize approach. We first
present the formulation in weak form and discretize the forward convection diffusion equation with
Streamline Upwind Petrov Galerkin (SUPG) approximation in space, and use the Crank-Nicholson method
in time. The discrete form of the inverse problem is then discussed, and first order optimality condition
(KKT conditions) are presented.

4.2.1 Contaminant Transport by Convection-Diffusion

The strong form of the convection-diffusion initial-boundary value problem is:

∂c/∂t − k∆c + v · ∇c = 0, (4.6)

c(0) = c0 on Ω,

∂c/∂n = 0 on ΓN ,

c = 0 on ΓD

We apply the standard Galerkin finite element approximation in space to the appropriate weak form of
(4.6). Let U be the space of admissible solutions, Uh be the finite element subspace of U and ωh be a test
function from that space. Then the finite element discretization of the weak form is written as follows: find
ch ∈ Uh such that∫

Ω

∂ch

∂t
ω dx +

∫
Ω

k∇ch · ∇ωh dx +
∫

Ω
ωhv · ∇ch dx = 0 ∀ ωh ∈ Uh (4.7)

The discrete convection diffusion equation can be written as a system of ODEs:

M ċ + Kc = 0 (4.8)

where the mass matrix Mij =
∫
Ω φiφjdx and the stiffness matrix Kij =

∫
Ω(k∇φi · ∇φj + φiv · ∇φj) dx

For simulations with high Peclet number, stabilization of the Galerkin scheme is required. Therefore, the
discretized weak form with the additional SUPG stabilization term, is∫

Ω

∂ch

∂t
ωh dx +

∫
Ω

k∇ch · ∇ωh dx +
∫

Ω
ωhv · ∇ch dx

+Σelem

∫
Ωe

τ (v · ∇ωh)
(

∂ch

∂t
− k∆ch + v · ∇ch

)
dx = 0 ∀ ωh ∈ Uh (4.9)

31

where τ is the SUPG constant [43]. Assuming linear shape functions, the mass matrix and stiffness matrix
are modified to

Mij =
∫

Ω
(φiφj + τv · ∇φiφj) dx (4.10)

Kij =
∫

Ω
[k∇φi · ∇φj + φiv · ∇φj + τ(v · ∇φi)(v · ∇φj] dx (4.11)

In time, we discretize using a Crank-Nicholson scheme, i.e.,

M
ck+1 − ck

∆t
+ K

ck+1 + ck

2
= 0 (4.12)

where the superscripts refer to time iteration steps. To compute the concentration at time step k + 1, we
solve: [

M

∆t
+

K

2

]
ck+1 =

[
M

∆t
− K

2

]
ck (4.13)

or
M

′
ck+1 = K

′
ck. (4.14)

Hence, the discrete forward convection diffusion equation in matrix form is:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
′

0
−K

′
M

′

−K
′

M
′

.
.

.

−K
′

M
′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
.
.
.
.

cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
′
c0

0
.
.
.
.
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.15)

We represent the above matrix with the following simplified notation:

Ac − Tc0 = 0 (4.16)

If Nn is number of nodes in space, and Nt is number of time steps, then dimensions of discrete operators
and vectors are:

A : (Nn ∗ Nt) × (Nn ∗ Nt) (4.17)

c : (Nn ∗ Nt)
c0 : (Nn)
T : (Nn ∗ Nt) × Nn

4.2.2 First Order Optimality Conditions and Inversion Equations

The inversion problem (4.1) can be written in discrete form as:

min
c,c0

1
2
[B(c − c∗)]T [B(c − c∗)] +

β

2
cT
0 Rc0 (4.18)

s.t. Ac − Tc0 = 0

32

where R is the discrete Laplacian (i.e. Rij =
∫
Ω ∇φi · ∇φj dx), and B is a Boolean matrix with 1’s

corresponding to sensor nodal locations.

To obtain first order optimality conditions we first form the Lagrange function

L(c, c0, λ) =
1
2
[B(c − c∗)]T [B(c − c∗)]) +

β

2
c0Rc0 + λT (Ac − Tc0) (4.19)

We derive the first order optimality conditions for this function by taking derivatives with respect to c, c0,
and the adjoint variable λ, which results in the state equation (4.16), the adjoint equation:

AT λ + BT B(c − c∗) = 0 (4.20)

and the inversion equation:
−T Tλ + βRc0 = 0 (4.21)

In matrix notation, the KKT system is as follows:⎡⎣BTB 0 AT

0 βR −T T

A −T 0

⎤⎦ ⎡⎣ c
c0
λ

⎤⎦ =

⎡⎣BT Bc∗

0
0

⎤⎦ (4.22)

We follow two methods to solve this large coupled system: (1) an all-at-once or full space method, where
the KKT system is solved simultaneously via a Krylov method as one large system, and (2) a reduced
space method in which the equations are reduced to the initial concentration space and solved via conjugate
gradients.

In the full space method, we use two approaches. The first is LNKS (see [36] for details). In this method,
one needs to store state, adjoint and inversion variables. The success of this approach depends on the
quality of the reduced space preconditioner. In the second full space approach, we reorder the equations
and unknowns as follows: ⎡⎣ A 0 −T

BTB AT 0
0 −T T βR

⎤⎦ ⎡⎣ c
λ
c0

⎤⎦ =

⎡⎣ 0
BT Bc∗

0

⎤⎦ (4.23)

and we use a domain decomposition preconditioned Krylov method to solve this system. In this approach,
one needs to store the entire KKT matrix to construct the preconditioner. Furthermore, the convergence
behavior of this method deteriorates as the regularization parameter decreases due to the increasing
ill-conditioning of the KKT matrix.

In the reduced space method, the solution procedure consists of first eliminating c from the state equation,

c = −A−1Tc0 (4.24)

then eliminating λ from the adjoint equation,

λ = −A−TBA−1Tc0 − A−T Bc∗ (4.25)

to finally obtain the reduced system for the inversion parameter, c0.

[T T A−T BA−1T + βR]c0 = −T T A−T Bc∗ (4.26)

Since the coefficient matrix (the reduced Hessian) of this system is positive definite, we solve for the
inversion parameter c0 using the conjugate gradient method. Each CG matrix-vector product requires one
forward solve (with A) and one adjoint solve (with AT). Only the inversion variable c0 needs to be stored.
The reduced Hessian is generally better conditioned then the KKT matrix in the full space method, and
often no preconditioner is needed. The disadvantage of the reduced space method is the need to solve one
forward and one adjoint equation at each CG iteration.

33

4.3 Implementation and Numerical Results

In this section, we present typical results for source inversion using the reduced space algorithm described
above. We give inversion results for the transport of a contaminant within a rectangular geometry as well as
over a synthetic terrain.

4.3.1 Transport of a Source Contaminant

We first show results of a forward simulation. A synthetic terrain, shown in Figure 4.1, was created using a
set of eight random Gaussian bumps located in the problem domain
Ω = {(x, y, z) |0 ≤ x ≤ 10, 0 ≤ y ≤ 10, 0 ≤ z ≤ 5}. The domain was discretized into a logically
rectangular grid of 20 × 20 × 10 hexahedra, which were each decomposed into six linear tetrahedra.

An initial velocity field was computed for this domain by solving the steady-state incompressible
Navier-Stokes equations. The inflow velocity boundary condition was set to vx = z2 along the plane
x = 0. Traction-free boundary conditions were assumed at x = 10. On all other boundary surfaces, nonslip
conditions were assumed normal to the boundary surface and traction-free boundary conditions were
assumed tangential to the boundary surface.

An initial source distribution was centered at {2, 5, 0} with an initial spatial concentration given as

c0 = 10e−4.0((x−2)2+(y−2)2+z2) (4.27)

Based on the precomputed velocity field, transport of the initial source concentration was modeled for
t ∈ [0, 20]. The time interval was discretized into 100 time steps. The diffusion coefficient was taken as
0.05, resulting in a maximum element Peclet number of 10.

Figure 4.1 illustrates the transport of the source contamination over time. Due to the low velocities near the
surface, the contaminant is primarily diffusing early in the simulation. However, as the contaminant
diffuses vertically, the greater velocity convects it.

4.3.2 Source Inversion Results

Based on the forward transport of the contaminant described above, in this section inversion results. As
before, our problem domain is discretized into a logically rectangular grid of 20 × 20 × 10 hexahedra,
which were each decomposed into six linear tetrahedra. We show results for both the synthetic terrain
described above and for the case where there is no topography.

Our target source concentration is the same as for the forward problem. However, here we are going to
consider the time interval of t ∈ [0, 20] discretized into 20 time steps.

34

Figure 4.1. Transport of chemical over an 8 Gaussian synthetic land-
scape at initial time, 30, 60, and 90 timesteps.

4.3.2.1 Number of sensors

In Tables 4.1 and 4.2, the L2 and ∞ norms of the “error” between and target initial concentration and
inverted initial concentration, and the number of CG iterations to solve the system of inversion equations,
are presented for the case of (1) no topography and (2) a synthetic terrain.

As expected, as the number of sensors located in the domain is increased, the predicted initial
concentration more closely resembles the true initial concentration. Qualitatively, this is evident in Figure
4.2. Additionally, the system becomes better conditioned as evidenced by teh decreasing number of CG
iterations.

Table 4.1. Comparison of CG iterations and error norms with varying
number of sensors, when inverting for a Gaussian source concentration
in a 20 × 20 × 10 element rectangular domain.

of sensors ‖e‖L2
‖e‖∞ iterations

21 × 21 × 21 0.0203 0.00354 42
11 × 11 × 11 0.0203 0.00354 42

6 × 6 × 6 9.02 2.53 91
3 × 3 × 3 37.94 4.49 124

35

Table 4.2. Comparison of CG iterations and error norms with varying
number of sensors, when inverting for a Gaussian source concentration
in a 20 × 20 × 10 element domain with 8 Gaussian “mountains”.

of sensors ‖e‖L2
‖e‖∞ iterations

21 × 21 × 21 0.034 0.0041 58
11 × 11 × 11 0.034 0.0041 58

6 × 6 × 6 10.04 2.65 128
3 × 3 × 3 38.10 7.22 148

Figure 4.2. Inversion results: target concentration (top left), 6x6x6 sen-
sor array inversion (top right), 11x11x11 sensor array inversion (bottom
left), and 21x21x21 sensor array array (bottom right).

36

Table 4.3. Comparison of CG iterations and error norms with varying
regularization parameter β, when inverting for a Gaussian source con-
centration in a 20×20×10 element rectangular domain with a 6×6×6
sensor array.

β ‖e‖L2
‖e‖∞ iterations

10−2 9.68 2.42 47
10−3 9.02 2.53 91
10−4 8.34 2.36 185
10−5 7.74 2.31 282

Table 4.4. Comparison of CG iterations and error norms with vary-
ing regularization parameter β, when inverting for a Gaussian source
concentration in a 20 × 20 × 10 element domain containing 8 Gaussian
“mountains” and a 6 × 6 × 6 sensor array.

β ‖e‖L2
‖e‖∞ iterations

10−2 10.69 2.53 66
10−3 10.04 2.65 128
10−4 9.33 2.49 198
10−5 8.73 2.44 328

4.3.2.2 Regularization Parameter

Regularization is required to eliminate the null space of the least squares inversion operator. As the
regularization parameter β increases, the reduced Hessian becomes better conditioned, and the reduced
system is easier to solve. However, the regularization modifies the range space as well, and therefore the
inverted field is less accurate with increasing β. Tables 4.3 and 4.4 illustrate this for both the no topography
and synthetic terrain domain.

4.4 Conclusions

We demonstrate the use of adjoint based methods on a transient inversion problem subject to
convection-diffusion. We are interested in an inversion of initial conditions for a contamination event in a
regional model and we assume that inversion parameters exist everywhere in the domain. The constrained
optimization problem is reformulated as an unconstrained problem by forming a Lagrangian function. By
taking derivatives of this function the KKT system results, which is solved by CG on a block-eliminated
system in the reduced space of the inversion variable, i.e. the concentration field. The focus of this
development has been on computational efficiency by using structured grids and matrix free
implementations. We are able to solve the inversion problem for a reasonably sized dataset relatively
efficiently. However, in order to scale up the problem so that we can apply this methodology to a large

37

regional dataset at fine resolution, we need an efficient preconditioning strategy for the solution of the
reduced Hessian. As of the writing of this report, we have developed the basic interface for a multigrid
approach and anticipate a successful implementation.

38

Chapter 5

Automatic Differentiation

5.1 Introduction

Sensitivity information is ultimately reliant on the fundamental derivative calculation. Here, our focus is on
the differentiation of expressions implemented in the C++ programming language. There are many
approaches available to implement derivative calculations, including symbolic methods, directional
differentiation, complex step and automatic differentiation (AD). An appropriate calculation strategy
depends on implementation issues, accuracy requirements, and the importance of computational efficiency.
Symbolically derived analytical code provides the most accurate results, but can be time-consuming to
derive, especially for complex physics. Furthermore, the implementation can be difficult and error prone.
The directional finite-difference techniques are simpler to implement but result in less accurate derivative
values. The selection of the perturbation step size is one of the fundamental problems associated with finite
differencing and is difficult to set a priori. Setting the perturbation step too large or too small will
exacerbate either truncation or round-off errors and no step size will remove these fundamental errors.
Complex step finite differencing is a potentially implementation-efficient approach with results accurate to
machine precision. Even though the implementation is relatively straightforward, involving the addition of
a complex type, the disadvantage is in the redundancy of certain computations in comparison to automatic
differentiation. Automatic differentiation can potentially provide the optimal combination of accuracy,
implementation simplicity, and computational efficiency. Current source transformation tools are not quite
as flexible as the template overloading libraries. The standard source transformation tools are somewhat
sensitive to simulation code implementations and can generate a cumbersome development environment
because of seperate recompilations to calculate the appropriate derivative values of new functions. Also,
the computational efficiency of the transformed code depends entirely on the ability of the source
transformation tools to be sensitive to the important hardware components. Obviously this is a difficult task
and clearly not always achievable. Nevertheless, significant work has been done on tools that use source
transformation [38, 100, 37] and can be very effective as a general or initial approach to calculating
derivatives. An alternative strategy for applying AD in C++ based codes is to use template overloading.
The template overloading stategy provides a mechanism to implement AD at various levels of complexity
in functions. This removes certain code maintenance issues, provides machine precision derivative
calculations, and most importantly provides an easy mechanism to control the level of intrusiveness of the
AD calculation, which has implications to implementation effort and computational efficiency. The subject
of this chapter is the use of hybrid strategies involving the application of AD at various levels of functional

39

complexity. We present the application of hybrid approaches to a relatively complicated function
evaluation in gas dynamics.

We focus on the differentiation of vector functions of the form

f(x) ∈ IRn → IRm (5.1)

where it is assumed that f(x) has at least one continuous derivative. Many different types of numerical
algorithms, such as linear solvers, nonlinear solvers,and optimization methods, require the application of
the Jacobian-vector product

δf =
∂f

∂x
δx (5.2)

evaluated at a point x where δx ∈ IRn can be any particular vector. The application of the linear operator in
(5.2) is required, for instance, in an iterative Krylov-Newton method for the solution of nonlinear equations
of the form f(x) = 0 where n = m. The basic linear operator in (5.2) can be used directly as the operator
application in a Krylov linear solver, such as GMRES, or can be used to generate an explicit matrix given
the structure of the function f(x). We generalize (5.2) to a form that involves the multiple simultaneous
application of this linear operator for multiple right-hand sides

U =
∂f

∂x
S (5.3)

where S ∈ IRn×p and U ∈ IRm×p. Note that (5.3) can be used to generate the entire Jacobian matrix
∂f/∂x itself when S = I .

In this chapter we consider derivative computations of the form (5.2) and (5.3) for a broad class of ANSI
C++ codes, in particular partial differential equation (PDE) based simulations. However, other models can
also be considered such as differentiable algebraic equations (DAEs) based network simulators. Although
we demonstrate certain derivate calculation strategies using a concrete example from compressible fluid
dynamics, most of the statements and conclusions presented in this work are general and can be applied to
a range of functions and numerical algorithms. The primary contribution of this work is the development of
hybrid strategies that combines automatic and symbolic differentiation for complex functions to optimize
the trade-off between implementation effort and the need for computational efficiency.

This chapter is organized as follows. Background information for various methods to differentiate ANSI
C++ code is provided. Section 5.2 presents an overview of a large class of application areas where
large-scale functions are assembled from a set of mostly independent “element” computations. This section
uses the term “element” in the broadest sense and can be applied to PDE simulators as well as other types
of models. A series of different levels of hybrid symbolic/AD methods for differentiation is defined.
Section 5.4 provides a concrete example using compressible flow equations and presents numerical results
that compare and contrast many of the different differentiation approaches. Finally, in Section 5.5 we give
a number of conclusions and observations.

5.2 Background

There are a variety of methods that can be used to compute the linear operator in (5.2) for vector functions
implemented in ANSI C++: 1) hand-coded symbolic derivatives (SD), 2) directional finite differences
(FD), 3) complex-step (CS), and 4) automatic (or algorithmic) differentiation (AD). The main focus of this

40

work will be on the use of operator overloading methods for AD, but first other methods are reviewed so
that the advantages of hybrid approaches can be fully appreciated.

The first method is referred to as symbolic differentiation (SD) and is based on symbolically deriving (5.2).
The derivative expressions can either be derived and simplified by hand or by using tools such as Maple1 or
Mathematica2. This approach can yield very accurate and efficient derivative computations but can require
a tremendous amount of manual labor and can be error prone. Even for moderately complicated functions
it can be difficult to derive and implement the derivatives in a way that achieves good computer
performance. However, because SD results in accurate analytic derivatives and because SD can be
implemented potentially in a computational efficient manner (provided the target function is reduced to
something manageable), this approach can be used in combination with automatic differentiation methods
to produce excellent results, as discussed in later sections.

The second (and perhaps the most popular) method to compute an approximation to (5.2) is to use
directional finite differencing (FD) of x → f(x). For example, a one-sided first-order finite difference
approximation to (5.2) at a point x is given by

δf ≈ f(x + εδx) − f(x)
ε

(5.4)

where ε ∈ IR is the finite difference step length that must be selected to approximately minimize the sum of
O(ε) truncation errors and roundoff cancellation errors. This approach requires minimal implementation
effort because it depends only on the original function x → f(x) evaluation code, a single vector function
evaluation f(x + εδx) and several simple floating point operations. As a consequence of this simplicity, it
is also a computationally efficient calculation. Higher-order finite-difference approximations can be used to
reduce the truncation error. This allows larger finite difference step sizes ε to decrease roundoff error
thereby reducing the overall approximation error. For example, the fourth-order central finite difference
approximation

δf ≈ f(x − 2εδx) − 8f(x − εδx) + 8f(x + εδx) − f(x + 2εδx))
12ε

(5.5)

can be applied, yielding O(ε4) truncation errors but at the cost of four evaluations of x → f(x). The
disadvantages of finite-difference approaches are that i) it is difficult to select a priori the optimal finite
difference step length ε such that the sum of truncation and roundoff errors are adequately minimized and
ii) higher-order and therefore more accurate approximations, such as shown in (5.5), significantly increase
the computational cost. In general, the unavoidable errors associated with the finite-difference approaches
can result in poorly performing numerical methods.

A third approach to differentiate x → f(x) is the complex-step (CS) method. This method relies on the
concept of analytic extensions, where the initially real f is extended into the complex plane in a
neighborhood of x. The properties of analytic functions allows the approximation

δf ≈ Im[f(x + iε δx)]
ε

, (5.6)

where the right-hand side f denotes the extended function and Im denotes imaginary value. Note that there
is no subtraction involved in this finite-difference approximation and thus no loss of significant digits in
finite precision arithmetics. Approximation (5.6) requires f to be real analytic at x, which most operations
performed on floating-point numbers in computer programs are with a few but important exceptions
discussed below.

1Maple: http://www.maplesoft.com
2Mathematica: http://www.wolfram.com

41

In ANSI C++, the CS implementation amounts to replacing the floating-point real data type double with
a floating-point complex data type using a type similar to std::complex<double>. Formula (5.6)
with a very small ε, say ε = 10−20, will then provide very accurate derivative approximations free from the
classical cancellation effect associated with finite differences. Therefore, in finite precision arithmetics, the
CS method provides essentially exact derivative evaluations.

However, there are disadvantages associated with the use of the complex step method. First, complex
arithmetics is significantly more expensive than real arithmetics. Second, the technique requires all
operations involved in calculating f(x) to be real analytic. The standard definition of the absolute value
function |z| =

√
a2 + b2 for a complex number z = a + ib is not analytic and not the analytic extension of

the real absolute value. The analytic extension is
√

z2, using the principal branch of the square root.
Another complex extension of the real absolute value that is not the analytic, but one that also give the
correct result using formula (5.6), is abs(a + ib) = a + ib if a ≥ 0 and abs(a + ib) = −(a + ib) if a ≤ 0.
Another problem for the CS method are the relational operators, such as < and >, which are not even
defined for complex numbers (although can be defined by relations between associated real parts). For
these reasons an existing (possibly optimized) C++ complex data type designed for complex arithmetic,
such as the standard C++ data type std::complex<>, cannot be directly used for the CS method
without making modifications to the underlying C++ code. The alternative, as advocated in [157], is to
define a new C++ complex data type that properly defines the relational operators < and > and the absolute
value function for use as a differentiation tool. The disadvantages of this approach is that an existing,
possibly optimized, C++ complex data type cannot be used for the purpose of differentiation. The CS
method, however, is similar in many ways to operator overloading based automatic differentiation. For this
reason, the CS approach can be utilized as a simple verification of automatic differentiation calculations.

The fourth method for evaluating (5.2) is to use automatic differentiation (AD) [97]. It should be noted that
automtatic differentiation is sometimes also referred to as algorithmic differentiation. The abstraction of
automatic differentiation can be dated back to the development of code lists in the late 1950s and the early
1960s [30, 1, 215]. Considerable advancements have been made since then. Source transformation tools
such as ADIFOR [37] and ADIC [38] have been the primary focus for fortran and C based codes. More
recently, operator overloading methods using template expressions have been effectively applied to C++
codes [54].

AD exploits the chain rule and is based on the primitive rules for differentiation (e.g. (a + b)′ = a′ + b′,
(a − b)′ = a′ − b′, (ab)′ = a′b + ab′, (a/b)′ = (a′b − ab′)/(b2), sin(a)′ = cos(a)a′ etc.). Therefore these
methods are free of truncation and roundoff errors that plague FD methods. Only normal floating point
roundoff errors are present in AD. In fact, it can be shown that the roundoff errors in the AD derivative
computations are bounded by the roundoff errors involved in computing x → f(x) [97]. Therefore, a
simple way to ensure that the AD derivatives are accurate is to ensure that the function evaluation is
accurate. This is the first example of an important principle of AD which is “what is good for the function
evaluation is also good for AD” [97].

AD can be performed in forward or reverse mode. The forward mode is the easiest to understand and is the
most efficient for computing derivative objects of the form (5.2). The general process consist of
decomposing the function into elemental steps, applying simple derivative rules to individual operations
and then using the chain rule to provide a final derivative calculation of the overall function. The reverse
mode of automatic differentiation was introduced by Linnainmaa [147] in 1976 and later used by
Speelpenning [199]. It can be viewed as a topdown reconstruction of the code list and is equivalent to
programming an adjoint sensitivity routine. Although the reverse mode of AD is an important capability,
especially for computing gradients where n is large, there are currently very few tools available to perform

42

this type of calculation automatically; to the best of the authors knowledge there are no production quality
C++ capabilities to perform reverse mode AD. As such, our efforts have focussed on the forward mode of
AD. The forward mode of AD computes both the function value and Jacobian-vector products of the form
(5.3) for one or more input or seed vectors. More specifically, forward-mode AD performs

(x, S) →
(

f(x),
∂f

∂x
S

)
(5.7)

where S ∈ IRn×p as known as the seed matrix. This form of AD only computes the function value f(x)
once and uses it to propagate p different columns of sensitivities through the forward differentiation
operator. One common choice for S is the n × n identity matrix I . When the seed matrix S = I is used in
the forward mode of AD, then the output is the Jacobian matrix ∂f/∂x. When n and m are large, it is
common that there is a lot of sparsity in the Jacobian ∂f/∂x and much work has been done to take
advantage of this sparsity. Here we will only consider the direct use of the forward-mode of AD to
explicitly form Jacobians when n and m are small and the Jacobians ∂f/∂x are fully dense. However,
even in these smaller dimensional applications of forward-mode AD, it may still pay to take advantage of
the structure of f(x) when the seed matrix S = I is used as many earlier derivative computations involving
zeros can be avoided.

In general, there are two major approaches for implementing AD: source transformation and operator
overloading. The source-transformation approach involves a compiler-like tool that reads an entire piece of
source code implementing a function to be differentiated. The compiler-like tool parses the code, performs
various analyzes and then writes a new set of source files defining new functions that implement the
forward (and perhaps in some cases also the reverse) mode of AD. The operator overloading approach for
forward AD is to use a derived abstract data-type that defines all of the operators of a floating point scalar
but also carries along one or more derivative components. More specifically, one derivative component is
carried along for each column in the seed matrix S in (5.7). The operator overloading approach performs
elementary derivative computations in addition to the elementary function evaluation computations. A
straightforward implementation of forward-mode AD using operator overloading handles piecewise
defined functions by being able to easily navigate through conditional branches (i.e. if statements), and
when combined with C++ function overloading, this approach can also be used to define rules to
differentiate through non-C++ or third-party function calls.

Several different C++ classes use operator overloading to implement the forward mode of AD3. Although
these classes use different approaches, we focus on the forward AD (Fad) suite of C++ classes [54]. These
methods are templated on the scalar type and therefore allow great flexibility in their use (for example
creating nested AD types to compute second and higher-order derivatives). The Fad classes use a C++
template programming technique called expression templates which results in object code that eliminates
many of the temporary objects commonly created by operator overloading in C++. One of the classes
(TFad) is also templated on the derivative components and therefore does not impose any runtime dynamic
memory allocation when it is used.

As pointed out in [157], the CS and operator-overloading AD approaches have a lot in common with
respect to computing the single vector right-hand side form of (5.2). They both use operator overloading
and both carry two floating-point values (the function value and the single derivative component) with each
scalar variable. Both can produce essentially analytic derivative objects. However, AD methods are more
computationally efficient for a number of reasons. First, the CS method performs unnecessary floating

3http://www.autodiff.org

43

point operations in some cases. For example, consider the CS multiplication operation

(a + ia′)(b + ib′) = (ab − a′b′) + i(ab′ + a′b).

Here i(ab′ + a′b) carries the derivative component and ab ≈ ab − a′b′ is essentially the value because
ab � a′b′. The elementary multiplication and subtraction of a′b′ is unnecessary. AD does not perform
these types of unnecessary computations and therefore is more efficient. Second, specially designed AD
types, such as TFad<>, can carry multiple derivative components instead of just one which makes the
computation of (5.3) for p > 1 right-hand sides more efficient since the function value f(x) is only
computed once and amortized over the p multiple derivative components. This is not the case for the CS
method which must compute the function value over and over again for each of the p columns of S. Third,
the use of multi-component AD types can result in better memory usage (i.e. cache) performance since the
expressions for f(x) are only moved through one time. However, in the CS method the function f(x) must
be evaluated independently for each derivative component p.

In addition to the performance issues, there are also some implementation differences. An off-the-shelf
complex data type such as std::complex<> cannot be used without modifying underlying C++ source
code for the logical operators >, < or the absolute value function |.|. Another significant disadvantage of
the CS method is that if f(x) already uses complex arithmetic then it is unclear if the CS method can be
used even through nested types such as std::complex<std::complex<> > are potentially allowed.

Based on the previously described points, AD should always be preferred over the CS approach in
production ANSI C++ code. Given this conclusion, can AD however be improved upon by considering a
hybrid approach? To answer that question, we first describe the relationship between the SD and AD
methods. Given enough developer time and effort, SD approaches should always be more computationally
efficient in memory and CPU time than any AD approach. This is because SD can simply mimic what AD
does performing exactly the same operations and throw away unnecessary computations. Forward-mode
AD always computes the function value in addition to the derivatives as shown in (5.7) even though this
function value is usually thrown away (i.e. since it is already known). In the extreme case where all of the
operations implementing f(x) are linear (i.e. only + and −), AD performs twice as many flops as a simple
SD approach since the derivative computations such as (a + b)′ = a′ + b′ and (a − b)′ = a′ − b′ never need
the values a or b. If the majority of operations in a particular function f(x) are linear, then significant
savings can be achieved by specializing the computations for the case where the final function value is not
needed, only the derivatives. For example, consider the simple function in Figure 5.1. When performing
forward AD on this function, only the value for the first intermediate variable x5 = x1x2 is needed to
compute the derivative for x′

6 = x′
5x4 + x5x

′
4 and the values for all of the other intermediate variables xi,

for i = 6 . . . 10, can be ignored since they are not used in any later derivative computations. In this
example, a simple SD approach can result in nearly half the floating point operations as the basic AD
approach.

For general functions f(x), specialized SD approaches can be very difficult to implement and maintain (as
the function f(x) changes due to new requirements) but in some specialized cases, such as discretization
methods for PDE, the high-level structure of f(x) can be exploited fairly easily. Furthermore, this
high-level structure generally does not change significantly once the discretization method has been
adopted. Such specialized vector functions f(x) have a regular hierarchical structure with many different
layers and, in these cases, one can symbolically differentiate one level at a time, going deeper and deeper
until sufficient performance is achieved. Any code below the current symbolically differentiated level can
of course be easily and effectively differentiated automatically using the operator overloading method. The
ratio of SD to AD code depends on a trade-off between developer time and computational performance.

44

Input:
x1, x2, x3, x4

Computation:
x5 = x1x2, x6 = x5x4, x7 = x6 − x1, x8 = x7 + x2, x9 = x8 − x3, x10 = x9 + x4

Output:
f = x10

Figure 5.1. Example of a simple function f(x) ∈ IR4 → IR with
nonlinear operations up front followed by all linear operations.

5.3 Hybrid symbolic/AD approaches for element-based assembly models

We describe a common model for the assembly of vector functions of the form (5.1). This general
assembly encompasses many different application areas from various discretization methods for PDEs
(i.e. finite-element, finite-volume, discontinuous Galerkin etc.) to network models (i.e. electical devices,
utility networks, processing plants etc.). The goal of this section is to describe levels of intrusive symbolic
differentiation combined with automated methods that can be used to efficiently compute products such as
(5.2). We start with an abstract model (shown in Algorithm 2) to establish notation and general
methodology in preparation of discussing more complicated issues.

Algorithm 2. GENERIC ELEMENT-BASED ASSEMBLY MODEL OF THE GLOBAL FUNCTION f(x)

x → f(x)

1. Initialization
f = 0

2. Element assembly

for e = 1 . . . Ne

Gather local variables
xe = Px,e x ∈ IRne

Local computation
fe = fe(xe) ∈ IRme

Global scatter and assembly
f = f + P T

f,e fe

The assembly model in Algorithm 2 shows a summation assembly of independent element computations.
Here we use the term element in a most general sense that is not restricted to just finite-element methods.
For each element, a relatively small number of variables are gathered for the local computation by the
operation xe = Px,e x. This “local” vector of variables xe is then used in a “local”, relatively compact,
element computation xe → f(xe) to form fe ∈ IRme . In general ne � n and me � m. Finally, for each
element, the local function fe is assembled into the global function as f = f + PT

f,e fe.

45

This assembly model uses abstractions of mapping matrices Px,e, and Pf,e to represent the indexing of
local/global variables and functions respectively. These matrices contain only columns of identity (i.e. each
row and column contains only one nonzero element) or zeros depending on the formulation of the problem.
The conversion used here for a local/global mapping matrix P is for the non-transposed linear operator P
to perform global-to-local mappings as

vl = Pvg (5.8)

and for the transposed operator PT to perform the local-to-global mappings as

vg = P T vl. (5.9)

The element functions fe(xe) (e = 1 . . . Ne) may represent the physics computation and the discretization
method of a PDE. Each computation can be processed independently and in parallel. In the case of a PDE
discretization, the element functions fe(xe) would represent either internal or boundary contributions.
Obviously, these calculations vary greatly depending on the discretization method. Therefore, for a
finite-element PDE method, the element loop in Algorithm 2 would involve both traditional internal
element loops and one or more boundary loops. Typically, more data than just xe is needed to define the
functions fe(. . .) and it is assumed that this data is encapsulated in the mathematical functions themselves.
Therefore, each function fe(. . .) may have different behavior based on the index e. In an actual
implementation, extra data will undoubtedly be required in which case one may have the function
fe(xe, de) where de is a vector of extra data associated with each element e. This extra data de is generally
considered “passive” data that does not define independent variables for which to differentiate through.

The assembly in Algorithm 2 can be compactly written as

f(x) =
Ne∑
e=1

P T
f,efe(Px,ex). (5.10)

This form will be useful in deriving the the various global derivative objects in the following section.

5.3.1 Global derivative computations

In this section, we consider how local element-wise derivative computations can be used with the element
assembly model in Algorithm 2 to compute the following global derivative objects:

1. Sparse Jacobian matrix:

J =
∂f

∂x
(5.11)

2. Jacobian-vector product:

δf =
∂f

∂x
δx (5.12)

These are the primary computations needed for a number of numerical algorithms including linear and
nonlinear equation solvers, stability analysis methods, uncertainty quantification, and optimization. From
the assembly model in (5.10), the Jacobian matrix is given by

∂f

∂x
=

Ne∑
e=1

P T
f,e

∂fe

∂xe
Px,e. (5.13)

46

Given the above expression for the Jacobian ∂f/∂x, it is straightforward to see how to assemble the above
desired global derivative objects.

5.3.2 Sparse Jacobian matrix and Jacobian-vector assembly

The assembly of the sparse Jacobian matrix J = ∂f/∂x follows directly from (5.13) and is given in
Algorithm 3.

Algorithm 3. ASSEMBLY OF THE GLOBAL JACOBIAN MATRIX

(y, u) → J = ∂f
∂x

1. Initialization
J = 0

2. Element assembly

for e = 1 . . . Ne

J = J + P T
f,e

∂fe

∂xe
Px,e

The above algorithm requires that the element Jacobians ∂fe/∂xe be explicitly computed. The mapping
matrices Px,e and Pf,b simply define how the local element Jacobians ∂fe/∂xe are scattered and added into
the global sparse Jacobian matrix J . Interfaces supporting this type of mapping are common in many
different types of codes. Also note that from now on it is assumed the the element-level Jacobians ∂fe/∂xe

are computed at the current xe which should be obvious from the context.

The assembly of a Jacobian-vector product (5.2) follows directly from (5.13) as

δf =
∂f

∂x
δx

=
Ne∑
e=1

P T
f,e

∂fe

∂xe
Px,eδx. (5.14)

and is restated in Algorithm 4.

Algorithm 4. ASSEMBLY OF THE GLOBAL JACOBIAN-VECTOR PRODUCT

(x, δx) → δf = ∂f
∂xδx

1. Initialization
δf = 0

2. Element assembly

47

for e = 1 . . . Ne

δxe = Px,eδx

δfe = ∂fe

∂xe
δxe

δf = δf + P T
f,eδfe

5.3.3 Precomputed-storage and storage-free approaches

Note that the forward assembly Algorithm 4 can be used in one of two ways. The first general class will be
referred to as precomputed-storage approaches. These methods involve computing the Jacobian matrices
∂fe/∂xe upfront in a single loop and storing these element matrices in an element-wise data structure.
Then the precomputed ∂fe/∂xe matrices can be used to assemble Jacobian-vector products in Algorithm 4
which involves local matrix-vector products. These repeated assembly loops only utilize the precomputed
∂fe/∂xe matrices and therefore do not touch the actual element functions fe(xe) themselves. The main
advantage of these approaches are that they can result in dramatic reductions in cost of repeated
Jacobian-vector products. The disadvantages of these approaches are that some potentially expensive
upfront AD computations are needed to compute the element Jacobian matrices and that these local
matrices can require significant storage.

The second general class will be referred to as storage-free approaches. These methods do not involve any
upfront computation or storage and instead just require applications of forward AD with fe(xe) to compute
Jacobian-vector products. The main advantages of these approaches are that no upfront computation or
storage is needed. The disadvantage of these approaches over precomputed-storage approaches is that the
formation of each product assembly is more expensive since the element functions fe(xe) must be called
repeatedly using AD datatypes.

5.3.4 Element derivative computations

The global derivative assembly computations described in the preceding sections require the following
types of element-wise derivative computations:

1. Element Jacobian matrix:

Je =
∂fe

∂xe
∈ IRme×ne (5.15)

2. Element Jacobian-vector product:

δfe =
∂fe

∂xe
δxe ∈ IRme (5.16)

Note that only storage-free approaches require directional derivatives (5.16) for Algorithm 4.

As mentioned previously, we assume that the dimensions of each element computation ne and me are
relatively small (i.e. O(100) for less) and that the mapping from the input element variables xe to the
output functions fe = fe(xe) is fairly dense (i.e. ∂fe/∂xe has few structurally zero entries). This is
generally true for many different types of applications but there are some exceptions such as PDE problems
involving many different chemical species with reactions. Given that we are assuming that ne and me are

48

relatively small and xe → fe(xe) is fairly dense, these element-wise derivatives can be computed in a
variety of ways. One of the most efficient and simplest of approaches is to use AD. In C++ this is
especially easy if the functions fe(xe) (or the classes that implement these functions) are templated on the
scalar types for the input arguments xe and the output vector arguments for fe. For example, suppose the
following non-member C++ function computes fe(xe, de):

void eval_ele_func(
const double x_e[],
const ElementData &d_e,
double f_e[]
);

where d e is an object that defines the rest of the element-specific data (e.g. nodal coordinates etc. for a
PDE discretization) for the element computation. To facilitate the use of automatic differentiation, the
above function can be templated as follows:

template<Scalar_x_e, Scalar_f_e>
void eval_ele_func(

const Scalar_x_e x_e[],
const ElementData &d_e,
Scalar_f_e f_e[]
);

Dense Jacobians and forward Jacobian-vector products can be efficiently computed using the forward
mode of AD and easily implemented using the small templated class TFad<N,T>. This type is templated
both on the underlying scalar type T and the number of derivative components N. In templating by the
number of derivative components, all memory allocation can be performed on the stack and therefore
greatly speed up compute times. Using TFad is as simple as instantiating the code for fe(. . .) using TFad,
initializing the input independent TFad variables appropriately and then running the TFad-enabled
function. On output, the desired derivatives are extracted from the output arguments. By using only one
derivative component (i.e. TFad<1,double>), a Jacobian-vector product in (5.16) can be cheaply
computed at a cost of less than twice the storage and less than five times the flops of the function
evaluation. However, generating a Jacobian with respect the N variables requires using N derivative
components (i.e. TFad<N,double>) and the resulting computation will, in theory, require between 2*N
and 5*Nmore flops than the original function evaluation. However, certain types of operations, like square
roots, can reduce the relative cost of each derivative component.

The following C++ functions give examples of the use of TFad for computing Jacbian-vector products
(5.16) and Jacobian matrices (5.15) for the templated function eval ele func(...).

//
// Compute an element Jacobian-vector product
//
void eval_ele_jac_vec(

const double x_e[],
const ElementData &d_e,
const double delta_x_e[],
double delta_f_e[]
)

49

{
const int N_x_e = 10; // Number components in x_e[]
const int N_f_e = 5; // Number components in f_e[]
// Initialize AD argumets
TFad<1,double> ad_x_e[N_x_e], ad_f_e[N_f_e];
for(int k = 0; k < N_y_e; ++k) {
ad_x_e[k].val() = x_e[k]; // Set indepenent var values
ad_x_e[k].fastAccesDx(0) = delta_x_e[k]; // Load multiplying vector

}
// Run function in forward mode
eval_ele_func(ad_x_e, d_e, ad_f_e);
// Extract state Jacobian-vector product
for(int k = 0; k < N_f_e; ++k) {
delta_f_e[k] = ad_f_e[k].fastAccessDx(0);

}
}

//
// Compute an ‘‘element’’ (column-major) Jacobian matrix
//
void eval_ele_state_jac(

const double x_e[],
const ElementData &d_e,
double J_e[]
)

{
const int N_x_e = 10; // Number components in x_e[]
const int N_f_e = 5; // Number components in f_e[]
// Initialize AD argumets
TFad<N_x_e,double> ad_x_e[N_x_e];
TFad<N_x_e,double> ad_f_e[N_f_e];
for(in k = 0; k < N_x_e; ++k) {
ad_x_e[k].val() = x_e[k]; // Set independent var values
ad_x_e[k].diff(k); // Mark independent vars

}
// Run function in forward mode to compute the entire state Jacobian
eval_ele_func(ad_x_e, d_e, ad_f_e);
// Extract state Jacobian matrix in column-major format
for(in k1 = 0; k1 < N_f_e; ++k1) for(in k2 = 0; k2 < N_y_e; ++k2)
J_y_e[k1+k2*N_f_e] = ad_f_e[k1].fastAccessDx(k2);

}

As shown above code examples, using TFad is straightforward provided the number of independent
variables is known at compile time. If the number of independent variables is not known at compile time
then the (slightly) less efficient class Fad can be used instead. (Note that the while element derivative
computations described above only used AD at the element level, these derivative computations can also be
performed using a hybrid symbolic/AD approach.

50

5.3.5 Levels of hybrid symbolic/AD differentiation

We introduce a classification system of levels for hybrid differentiation of functions that exhibit hierarchal
dependencies. Complicated models for f(x) will have many computational dependencies where higher
level calculations depend on lower level calculations. Hybrid differentation is based on that structure by
selecting the appropriate amount of symbolic differentiation combined with AD for the remaining lower
levels. Each level of this hierarchal structure defines a different possible level of a hybrid symbolic/AD
differentiation method. Here we focus on the types of element assembly models shown in Algorithm 2 and
focus on the different levels of symbolic/AD approaches for assembling δx → (∂f/∂x)δx. For each level
of hybrid method, higher-level expressions are symbolically differentiated and then all remaining
lower-level expressions are differentiated using AD. These levels are described next and provide a
classification of our hybrid differentiation strategy for systematic performance comparisons of our
upcoming concrete example discussions.

Level 0 denotes the application of directional AD to the global C++ function that computes x → f(x)
without any concern to underlying structure. This is the least intrusive level and therefore the easiest to use,
requiring no knowledge of the structure of f(x). The disadvantage of this level is the requirement that the
entire function computing x → f(x) be templated on the scalar type which is not practical for certain code
frameworks. Only storage-free methods are used with this most basic level.

Level 1 denotes the application of AD to the element level functions fe(xe). Both the storage-free and
precomputed-storage methods can be used for this level. In the case of the storage-free approaches,
directional AD is applied at the element assembly level to compute xe → (∂fe/∂xe)δxe, followed by an
assembly of the global Jacobian-vector product as shown in Algorithm 4. In the case of
precomputed-storage approaches, the seed matrix is set to identity S = I and the element Jacobians
∂fe/∂xe are precomputed using the forward mode of AD applied to fe(xe). These precomputed element
Jacobian matrices are then used to assemble subsequent Jacobian-vector products. The main advantage of
this level is that it requires no knowledge of the underlying structure of the expressions or mathematical
problem and only involves manipulating the basic assembly process . In addition, the entire C++ function
x → f(x) does not need to be templated on the scalar type; only the element functions for fe(xe) need be
templated on the scalar type.

Levels 2 and higher denotes symbolically differentiating into the element-level expressions fe(xe) and
applying AD on the remaining lower levels. Level 2 may only involve the least-invasive amount of
symbolic differentiation that only symbolically differentiates the highest-level expressions in fe(xe).
Levels 3 and higher may involve symbolically differentiating deeper and deeper into the expressions for
fe(xe). The number of meaningful levels that are possible depends on the nature of the expressions for
fe(xe). These higher-level hybrid symbolic/AD methods may be aplied using precomputed-storage or
storage-free approaches. Note that precomputed-storage approaches may not directly store the element
Jacobians ∂fe/∂xe but instead may only store contributions to these Jacobians that may result in less
overall storage and higher performance; The level-2 approaches described in Section 5.4 are an example of
this.

In general, for each increasing level of hybrid symbolic/AD method, the amount of developer work needed
to implement and maintain the method will increase. However, higher-level, more invasive methods offer
potential to greatly reduced storage (i.e. for precomputed-storage methods) and runtime CPU time (i.e. for
precomputed-storage and storage-free) methods.

Section 5.4 describes a concrete example for the use of several different levels of precomputed-storage and

51

storage-free symbolic/AD approaches and demonstrates the potential improvements in storage cost and
runtime performance for increasing levels of hybrid symbolic/AD methods.

5.4 Finite-volume discretization example

We present a concrete case study of various differentiation techniques and the application of different levels
of hybrid symbolic/AD approaches. The particular application we present here is a finite-volume method
for the Euler equations of gas dynamics which represents an example of a two-loop element assembly
model. The single loop of independent elements shown in Algorithm 2 accurately applies for a surprisingly
large number of application areas such as many finite-element methods for PDEs and many different types
of network models. However, a single independent loop over a single set of elements is not sufficient in
other areas and auxiliary variables and element loops must be added. One instance of this is the
finite-volume example described in this section where two or more coupled loops are required.

We take a top-down approach to presenting the hybrid differentiation of the Euler equation example. We
assume very little about the Euler equations and start the discussion with level 0. As additional levels of
differentiation are considered, more details of the Euler equations will be revealed and discussed. This
approach will demonstrate the utility of the hybrid strategy and provide an optimal approach to balancing
implementation effort versus computational efficiency. In addition, we ignore many details of the
discretization, and provide only enough algorithmic information to describe the use of the different
differentiation techniques. For additional details, we refer to the general CFD literature [40].

5.4.1 The basic residual function and level-0 hybrid symbolic/AD differentiation

At the center of this finite-volume CFD code is the computation of the residual function

w → r(w) ∈ IR(nd+2)nN → IR(nd+2)nN (5.17)

where nd is the spatial dimension (nd = 2 or nd = 3), nN is the number of nodes in the computational
mesh, and w ∈ IR(nd+2)nN is a vector of fluid states (density, velocity, pressure) in so-called conservative
form. Here we have changed the nomenclature of the global variables and global function from x → f(x)
to w → r(w) in order to match previous notation.

Our C++ prototype code contains a function that implements (5.17), and this function is templated on the
scalar types of each of the input vectors. It should also be noted that more data than just the vector of state
variables w is passed into this C++ function but for the purposes of the application of level-0 AD, this data
is not important. Templating this C++ function on the scalar type for w facilitates the straightforward use
of the AD type TFad at all levels of computation. While several differentiation calculations are needed for
gas dynamics, we focus on the computation of the state Jacobian-vector product

δr =
∂r
∂w

δw (5.18)

which is needed by various solution strategies for r(w) = 0 for example.

As previously mentioned, we take a top-down approach to describing this finite-volume code with the intent
of highlighting our use of hybrid symbolic/AD methods. We start with the highest-level description of the

52

functions, shown as the high-level vector function (5.17), and the least-invasive level of AD, that is, level-0
which applies AD to the entire residual evaluation code. We then symbolically differentiate deeper into the
code and discuss the impact on storage and runtime for repeated derivative computations of the form (5.2).
However, we stop using symbolic differentiation when we reach the most complicated algebraic expression
in the code, and in this case we stop at the calculation of the artificial dissipation term of Roe type.

The residual evaluation code for (5.17) is templated on the scalar type. Thus, if we can assume that the
function is first-order differentiable, then we do not need to know how the function (5.17) is evaluated in
order to compute (5.18) using the forward mode of AD. The templated residual evaluation function with
the scalar type TFad<1,double> for the input vector w and the output vector r only needs to be
instantiated in order to compute (5.18) using the forward mode of AD. All of the other data types for the
passive input data (which are inconsequential for a level-0 method) are left as double. This selective
template instantiation prevents wasted derivative computations for inactive input data.

In the following sections, we symbolically differentiate into the residual evaluation (5.17). For each level
of the symbolic differentiation process, we describe the computations inside of (5.17) in only enough detail
to be able to apply AD strategically to the lower levels.

5.4.2 Two-loop edge-based residual assembly

Implementing a basic level-1 hybrid symbolic/AD method requires knowing something about the
discritization method since this defines the element assembly process in Algorithm 2. The finite-volume
residual assembly consists of two loops over all edges in the computational mesh. In a finite-volume
discretization, a control volume is created around a mesh node where all the physics calculations are
performed. A control volume consists of edges, which is considered the basic element of this discretization
method. The finite-volume discretization described here uses an unstructured meshing—with tetrahedra or
hexahedra—of the domain Ω occupied by the gas. We denote by V(Ω) the set of mesh nodes in the strict
interior of the domain and by V(∂Ω) the nodes on the boundary of the mesh. Thus, the set of all nodes is
V(Ω) = V(Ω) ∪ V(∂Ω). Moreover, let Ni denote the set of nodes being nearest neighbors to mesh node i,
that is, the nodes that are connected to node i with an edge. We associate a surface vector nij with each

directed edge
i j−→ in the mesh. The normals are computed from a so-called dual mesh [40], and by

construction,
nji = −nij . (5.19)

Note that the normals are not of unit length and therefore embody both direction and magnitude. (The
magnitude represents a part of the surface area of the finite volume surrounding each node point.) The
residual in (5.17) is assembled in two edge-based loops as shown in Algorithm 5.

Algorithm 5. Two-loop edge-based residual assembly

Compute the residual vector r given the input vectors w, x, n and V .

Spatial gradient assembly

1. Set gi ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

53

(a) gi ← gi + ĝ(Vi,wi,wj,+nij)

(b) gj ← gj + ĝ(Vj ,wj,wi,−nij)

3. + Boundary contributions

Residual assembly

1. Set ri ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

(a) r̂ij = r̂(wi,wj ,xi,xj ,gi,gj ,nij)

(b) ri ← ri + r̂ij

(c) rj ← rj − r̂ij

3. + Boundary contributions

A single templated C++ function assemble grad(...) is called for each edge in Algorithm 5 to
simultaneously compute ĝ(Vi,wi,wj ,+nij) and ĝ(Vj ,wj,wi,−nij) in which some of the same
computations are shared. A single templated C++ function assemble resid(...) is called for each
edge in Algorithm 5 to compute r̂(wi,wj,xi,xj ,gi,gj ,nij). While the treatment of boundary conditions
is critical to any discretization method, the computation usually does not contribute significantly to the
computational cost of the state residual (5.17). Therefore, for the purposes of this discussion, we will gloss
over details of boundary conditions, since our goal is to address the bulk computational work. Enforcement
of boundary conditions would represent one or more element loops that would contribute to the residual
assembly.

5.4.3 State Jacobian-vector product assembly

By inspecting the edge-based assembly in Algorithm 5 and using the multi-variable chain rule, the
edge-based assembly loops for the Jacobian-vector product can be derived as shown in Algorithm 6.

Algorithm 6. Level-1 hybrid symbolic/AD Jacobian-vector product assembly

Compute δr =
∂r
∂w

δw given input vector δw

Linearized spatial gradient assembly

1. Set δgi ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

(a) δgi ← δgi +
∂ĝij

∂wi
δwi +

∂ĝij

∂wj
δwj

54

(b) δgj ← δgj +
∂ĝji

∂wi
δwi +

∂ĝji

∂wj
δwj

3. + Boundary contributions

Linearized residual assembly

1. Set δri ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

(a) δr̂ij =
∂r̂ij

∂wi
δwi +

∂r̂ij

∂wj
δwj +

∂r̂ij

∂gi
δgi +

∂r̂ij

∂gj
δgj

(b) δri ← δri + δr̂ij

(c) δrj ← δrj − δr̂ij

3. + Boundary contributions

In the above algorithm, we use the notation

∂ĝij

∂wi
=

∂

∂w
ĝ(Vj ,w,wj,nij)|w=wi ,

∂ĝij

∂wj
=

∂

∂w
ĝ(Vj ,wi,w,nij)|w=wj , (5.20)

∂r̂ij

∂wi
=

∂

∂w
r̂(w,wj ,xi,xj,gi,gj ,nij)|w=wi ,

∂r̂ij

∂wj
=

∂

∂w
r̂(wi,w,xi,xj ,gi,gj ,nij)|w=wj , (5.21)

∂r̂ij

∂gi
=

∂

∂g
r̂(wi,wj ,xi,xj,g,gj ,nij)|g=gi ,

∂r̂ij

∂wj
=

∂

∂g
r̂(wi,wj,xi,xj,gi,g,nij)|g=gj . (5.22)

The Jacobian-vector product assembly in Algorithm 6 constitutes a level-1 hybrid symbolic/AD
differentiation into the residual evaluation. At this level, AD only needs to be applied to the functions
ĝ(. . .) and r̂(. . .) that operate on objects associated with an edge and not the entire residual assembly
function for (5.17).

We consider two level-1 hybrid symbolic/AD strategies at the edge level for assembling the
Jacobian-vector product in expression (5.18). The first is the precomputed-storage approach and the second
is the storage-free approach. The precomputed-storage approach assembles Jacobian-vector products by
computing edge-based Jacobian sub-matrices and storing them. The storage-free level-1 approach simply
applies AD at the edge level to local edge-based functions ĝ(. . .) and r̂(. . .) using a single directional
derivative. The precomputed-storage level-1 approach initially applies AD at the edge-level to explicitly
compute local Jacobians, store them, and then assemble the full Jacobian-vector product by matrix-vector
multiplication through loops over the edges, utilizing the pre-stored local Jacobians.

When using the precomputed-storage level-1 approach, the local edge-based Jacobians

∂ĝij

∂wi
∈ IR(nd+2)nd×(nd+2),

∂ĝij

∂wj
∈ IR(nd+2)nd×(nd+2),

∂ĝji

∂wj
∈ IR(nd+2)nd×(nd+2),

∂ĝji

∂wi
∈ IR(nd+2)nd×(nd+2),

(5.23)

55

are computed and stored in a loop over all edges. If nothing more was known at all about the function
ĝ(. . .) then these Jacobians alone would require the storage of
4((nd + 2)(nd)(nd + 2)) = 4((3 + 2)(3)(5)) = 200 doubles per edge in 3D. However, these matrices
are actually diagonal, since the gradient is computed separately on each component of the conservative
variables. The diagonal structure reduces the storage to 4((nd + 2)(nd)) = 4((3 + 2)(3)) = 60 doubles
per edge. In addition, when using AD to generate these matrices, all of the variables in wi and wj can be
perturbed simultaneously requiring just two columns in the seed matrix S.

After the Jacobians (5.23) have been computed, the edge-based Jacobians

∂r̂ij

∂wi
∈ IR(nd+2)×(nd+2),

∂r̂ij

∂wj
∈ IR(nd+2)×(nd+2),

∂r̂ij

∂gi
∈ IR(nd+2)×(nd+2)nd ,

∂r̂ij

∂gj
∈ IR(nd+2)×(nd+2)nd ,

(5.24)

are computed and stored in a loop over all edges. Computing these edge-based Jacobians requires invoking
forward AD (i.e. using TFad<double>) using a seed matrix with
(nd + 2)(2 + 2nd) = (3 + 2)(2 + 2(3)) = 40 columns in 3D (one column of identity for each component
in wi, wj , gi and gj). These edge-based Jacobians require the storage of
2(nd + 2)(nd + 2) + 2(nd + 2)(nd + 2)(nd) = 200 doubles per edge in 3D. Therefore, the total storage
for edge-based Jacobians is 60 + 200 = 260 doubles per edge in 3D. This is a significant amount of
storage but, as shown in Section 5.4.4, the use of pre-computed Jacobians results in much more rapid
evaluations of (5.18).

Symbolically differentiating deeper into the residual evaluation requires knowing more about the
computations at the edge level. The next level of structure of these computations is more complicated, but
great gains in speed and memory savings can be accomplished by symbolically differentiating deeper. First
we describe the edge-based spatial gradient function ĝ(. . .) and then the more complicated edge-based
Euler residual function r̂(. . .).

The edge-based spatial gradient function ĝ(. . .) takes the form

ĝ(Vi,wi,wj,nij) =
1

2|Vi|
(wi + wj) ⊗ nij. (5.25)

The function ĝ(. . .) is linear in wi and wj so simply passing in δwi and δwj into the
assemble grad(...) function returns the linearized spatial gradients δgi and δgj . Clearly AD is not
needed for this computation.

The edge-based residual function r̂(. . .) uses a Roe dissipation scheme together with linear reconstruction
and a smooth limiter as follows:

r̂ij = r̂(wi,wj,xi,xj,gi,gj ,nij)

=
1
2

(
f(wi+

ij) · nij

)
+

1
2

(
f(wj−

ij) · nij

)
+ d

(
wi+

ij ,wj−
ij ,nij

)
(5.26)

56

where:

w =

⎛⎝ ρ
ρu
ρE

⎞⎠ , (5.27)

f(w) =

⎛⎝ ρu
ρu ⊗ u + Ip
u(ρE + p)

⎞⎠ , where (5.28)

p = (γ − 1)(ρE − 1
2
|u|2),

wi+
ij = w+(wi,wj,pi

ij), (5.29)

wj−
ij = w−(wi,wj,p

j
ij), (5.30)

pi
ij = gi · (xj − xi) ∈ IR(nd+2), (5.31)

pj
ij = gj · (xj − xi) ∈ IR(nd+2). (5.32)

(5.33)

Above, f(w) in (5.28) is the flux function of the Euler equations ∇ · f(w) = 0. Moreover, ρ, u ∈ IRd, p,
and E are the density, velocity vector, pressure, and total energy per unit volume, respectively. The vectors
wi+

ij and wj−
ij are the reconstructed left and right states. These reconstructions use the the spatial gradients

gi and gj and are intended to increase the accuracy in regions where the solution is smooth at little
additional computational cost but at the expense of effectively increasing the stencil, or footprint, of the
operator. Embedded in the reconstruction functions w+(. . .) and w−(. . .) is a limiter that is needed to
handle the very steep gradients around shocks. Several different limiters can be used. For the purposes of
this discussion the details of the limiter are not important, except that we use limiters that are piecewise
differentiable, such as the van Albada limiter. Finally, d(. . .) is a dissipation term (of Roe type) that
provides stability and dominates the computational cost of the method.

From the form of r̂ij in (5.26), its linearization with respect to wi,wj , gi and gj immediately follows as:

δr̂ij = Ji+
ij δwi+

ij + Jj−
ij δwj−

ij (5.34)

where

Ji+
ij =

1
2

∂
(
f i+
ij · nij

)
∂wi+

ij

+
∂d
(
wi+

ij ,wj−
ij ,nij

)
∂wi+

ij

, (5.35)

Jj−
ij =

1
2

∂
(
f j−
ij · nij

)
∂wj−

ij

+
∂d
(
wj−

ij ,wj−
ij ,nij

)
∂wj−

ij

, (5.36)

δwi+
ij =

∂wi+
ij

∂wi
δwi +

∂wi+
ij

∂wj
δwj +

∂wi+
ij

∂pi
ij

δpi
ij , (5.37)

δwj−
ij =

∂wj−
ij

∂wi
δwi +

∂wj−
ij

∂wj
δwj +

∂wj−
ij

∂pj
ij

δpj
ij , (5.38)

δpi
ij = δgi · (xi − xj), (5.39)

δpj
ij = δgj · (xj − xi), (5.40)

57

and where we have used a notation for the derivatives analogous to expressions (5.20)–(5.22).

We now describe how this additional knowledge of the structure ofr̂(. . .) is used to implement a level-2
hybrid symbolic/AD Jacobian-vector product more efficiently. The storage-free level-2 approach stores
nothing up front and computes local Jacobian-vector products at the edge level symbolically for all terms
except for the dissipation term d(. . .). In all cases, we used AD with TFad<double> to perform all
derivative computations with d(. . .).

The precomputed-storage level-2 approach initially computes and stores the sub-Jacobian matrices

Ji+
ij ∈ IR(nd+2)×(nd+2) Jj−

ij ∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂wi
∈ IR(nd+2)×(nd+2) ∂wj−

ij

∂wj
∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂wj
∈ IR(nd+2)×(nd+2) ∂wj−

ij

∂wi
∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂pi
ij

∈ IR(nd+2)×(nd+2) ∂wj−
ij

∂pj
ij

∈ IR(nd+2)×(nd+2)

(5.41)

and performs matrix-vector multiplication with these sub-matrices to assemble subsequent Jacobian-vector
products of the form (5.18). The sub-Jacobians wi+

ij and wj−
ij are diagonal since the reconstructions and

the limiters are component-wise operations. All of these Jacobian evaluations were manually derived and
coded in C++ except for the dissipation term d(. . .). This scheme requires the storage of
2(nd + 2)(nd + 2) + 4(nd + 2) + 2(nd + 2) = 2(3 + 2)(3 + 2) + 4(3 + 2) + 2(3 + 2) = 80 doubles per
edge in 3D. Once these edge-based sub-Jacobians are computed, they are utilized in the edge-based loops
shown in Algorithm 7 to assemble the Jacobian-vector product (5.18).

Algorithm 7. Level-2 hybrid symbolic/AD Jacobian-vector product assembly

Compute δr =
∂r
∂w

δw given input vector δw

Linearized spatial gradient assembly

1. Set δgi ← 0 ∀i ∈ V(Ω)

2. For each edge
i j−→:

(a) δgi ← δgi + ĝ(Vi, δwi, δwj ,+nij)

(b) δgj ← δgj + ĝ(Vj , δwj , δwi,−nij)

3. + Boundary contributions

Linearized residual assembly

1. Set δri = 0 ∀i ∈ V(Ω)

2. For each edge
i j−→:

58

Method Precomputed-storage Storage-free
Level-0 - 0
Level-1 260 0
Level-2 80 0

Table 5.1. Storage of edge-based Jacobian contributions in number of
doubles per edge

(a) δrij ← Ji+
ij δwi+

ij + Jj−
ij δwj−

ij , where and δwi+
ij and δwj−

ij are computed using (5.37)-(5.40).

(b) δri ← δri + δrij ,

(c) δrj ← δrj − δrij ,

3. + Boundary contributions

5.4.4 Results for various Jacobian-vector product assembly methods

Tables 5.1 and 5.2 give computational results for precomputed-storage and storage-free level-0, level-1 and
level-2 hybrid symbolic/AD schemes used to compute Jacobian-vector products of the form (5.18)
described above. Strategies to assemble Jacobian-vector products of the form (5.18) are summarized below:

Level-0: Apply direction forward AD (i.e. using the seed matrix S = δw) at the global residual
function call level (i.e. AD the entire C++ function for (5.17)).

Level-1: AD is applied in a black-box way at the edge assembly level.

Precomputed-storage Level-1: AD is applied at the edge level in a black-box way to generate
the sub-matrices in (5.23) and (5.24) and then these sub-matrices are used to assemble
Jacobian-vector products using Algorithm 6.

Storage-free Level-1: Directional AD is applied in a black-box way at the edge assembly level
on the functions ĝ(. . .) and r̂(. . .).

Level-2: Hybrid symbolic/AD is applied at the edge level where symbolically derived derivatives are
used for everything except the dissipation term d(. . .).

Precomputed-storage Level-2: The sub-matrices in (5.41) are computed symbolically up
front with AD used only for the dissipation term d(. . .). Once these edge-level sub-matrices
are computed and stored then Algorithm 7 is used to assemble Jacobian-vector products.

Storage-free Level-2: Edge-level Jacobian-vector products are computed using symbolically
derived and hand-coded derivatives for all expressions except for the dissipation term d(. . .)
where directional AD is used.

59

Method Precomputation Precomputed-storage Jac-vec Storage-free Jac-vec
Level-0 - - 3.14
Level-1 24.8 0.21 3.14
Level-2 4.73 0.19 0.1.93

Table 5.2. CPU time relative to residual evaluation for small mesh ex-
ample.

For the timing results reported here, we used a small and non-physical test mesh where all of the
computations easily fit in cache. All computations were run several times in a loop for a total of about 1.0
CPU seconds in order to obtain reliable timings. These tests therefore compare the floating point efficiency
of the implemented code and not the quality of the data structures with respect the memory usage
(e.g. cache misses). For all AD computations, the class TFad<double>was used as the scalar type for
the active variables. All derivative computation CPU times reported are relative to the time for the residual
evaluation which used the scalar type double. All of the results reported in this section were preformed
by compiling the C++ code using GNU g++ version 3.1 and run under Red Hat Linux 7.2 on a 1.7 GHz
Intel Pentium IV processor machine.

First we compare and contrast the different levels of storage-free approaches that assemble Jacobian-vector
products on the fly requiring no upfront storage or computation. These approaches may be preferred when
memory storage is at a premium. The storage-free Level-0 method required about 3.14 times the CPU time
compared to the CPU time to evaluate the residual function r(. . .) using double. The storage-free Level-0
is only about 50% more expensive than a central FD approximation. In addition to being computationally
efficient in comparison to FD approximations, the Jacobian-vector products are accurate to machine
precision.

The storage-free Level-1 method gives exactly the same relative CPU time of 3.14 as the storage-free
Level-0 approach. This should not be surprising since this approach performs almost exactly the same
computations as applying AD to the entire residual assembly function. In fact, in our C++ implementation,
the Jacobian-vector products for the storage-free Level-0 and storage-free Level-1 approaches gave the
same resultant vector down to the last bit. The primary advantage of the storage-free Level-1 approach over
the storage-free Level-0 approach is that the entire residual evaluation function does not have to be
templated on the scalar type.

The storage-free Level-2 approach exploits the gradient and residual computations and thereby reduces the
relative CPU time from 3.14 to just 1.93. This is now faster than a central FD but again gives exact
Jacobian-vector products. However, this hybrid SD/AD approach is still almost twice as expensive as
one-sided finite differences. To obtain better performance we need to consider methods that perform some
initial computations up front. Next, we therefore compare and contrast the various levels of
precomputed-storage approaches that compute and store Jacobian sub-matrices at the edge level and then
use them to assemble repeated Jacobian-vector products. These methods require more storage but can
significantly speed up repeated Jacobian-vector product assemblies.

The precomputed-storage Level-1 approach requires 24.8 times the CPU time of the residual assembly in
order to compute the edge-level matrices and store 260 doubles per edge. Once these matrices are
computed and stored, the relative CPU time for each subsequent Jacobian-vector product assembly is only

60

0.21 times the cost of a residual assembly. This is almost five times faster than a one-side FD
approximation. Note that the relative CPU time of 24.8 is actually quite impressive considering that
TFad<double> is used on the function r̂(. . .) with 40 derivative components. Therefore, the cost for
each derivative component is less than the cost of the function evaluation. The relative CPU time of 24.8
for the creation of these matrices, however, may still seem too high but in many situations where
Jacobian-vector products are performed at a particular point w (such as in an iterative linear solver like
GMRES in a Krylov-Newton method) the overall reduction in runtime over even one-side FDs can be
significant. If the memory capacity is limited or the reduction in CPU is insufficient, then additional
symbolic differentiation can be considered where Jacobian sub-matrices at the edge level are stored and all
derivative computations, except for the dissipation term, are derived symbolically and hand coded.

We show results for the precomputed-storage Level-2 approach. The Jacobian sub-matrices for the
dissipation term d(. . .) in (5.35) and (5.36) are computed using TFad<double> (using 10 columns in the
seed matrix). This approach results in dramatic reductions in relative CPU time for pre-computing
edge-based Jacobian sub-matrices and storage of these sub-matrices over the precomputed-storage Level-1
approach. The relative CPU time is reduced from 24.8 to 4.73 and the storage for the Jacobian sub-matrices
is reduced from 260 to 80 doubles per edge. However, we only see a minor reduction in relative CPU
time from 0.21 to 0.19 for subsequent Jacobian-vector product assemblies. Even through the reduction in
Jacobian-vector product computations is not significantly reduced, the dramatic reductions in upfront cost
and storage makes this scheme much more efficient in many cases.

We experimented with several different approaches to automatically differentiate the Roe-type dissipation
term d(. . .) shown in (5.26) and also attempted to derive the Jacobians symbolically. It required
approximately a month to derive expressions for the Jacobians of d(. . .) in (5.35) and (5.36) and after
approximately two weeks of implemention the resulting hand-derived and hand-coded Jacobian evaluation
C++ code was 2.5 times slower than the automatically generated AD code (using TFad<double>) and
was not giving the correct Jacobians. The likely reason for the degradation in performance of the
hand-coded Jacobian evaluation function is that there are many common expressions involved in the
Jacobian entries that are automatically exploited in the AD code that were not exploited in the hand-coded
derivative function. The attempt to symbolically derive and implement these Jacobians was therefore
abandoned to avoid expending inpractical amounts of effort.

Finally, results are presented for the use of several different automated strategies to compute the Jacobian
∂d/∂wi ∈ IR(nd+2)×(nd+2). When nd = 3 (3D) then the Jacobian is of size 5 × 5. Table 5.3 shows relative
CPU times on a variety of platforms for computing the 5 × 5 Jacobian ∂d/∂wi using one-sided finite
difference (FD), automatic differentiation (AD) using TFad<double>, and complex-step (CS) using
std::complex<double>.

An interesting thing to note is that the relative CPU time of performing one-side finite differences varies by
as much as 6.2 for icl to 7.4 for sgi even through exactly the same C++ source code was compiled on each
of these platforms and similar optimization levels where used. A relative CPU time of 6.0 for the one-sided
finite difference would be ideal since six evaluations of d(. . .) are performed (one for the base point and
five others for each perturbation in wi). Addition overhead is also incurred for performing the vector
subtraction and scaling such as shown in (5.4).

These results also show that the CS method using std::complex<double> is much less efficient than
the AD method using TFad<double>. However, all of our tests showed that the Jacobian entries for AD
and CS agreed to all by the last two significant digits. As mentioned earlier, there are several factors
contributing to the inefficiency of the CS method. First, the CS method performs some extra unnecessary

61

Compiler/platform One-sided finite differences Automatic differentiation Complex step
g++ 7.0 7.5 39.9
kcc 7.0 12.5 31.6
icl 6.2 10.3 59.3
sgi 7.4 19.5 39.0
cxx 6.7 57.4 197.5

Platforms
g++ : GNU g++ version 3.1, Red Hat Linux 7.2, 1.7 GHz Intel P IV
kcc : KAI C++ version 4.0e, Red Hat Linux 7.2, 1.7 GHz Intel P IV
icl : Intel C++ version 5.0, MS Windows 2000, 1.0 GHz Intel P IV
sgi : MipsPro C++ version 7.3.1
cxx : Compaq C++ version, CPlant4

Table 5.3.
Relative CPU times for the computation of the 5 × 5 Jacobian of the dis-
sipation term ∂d/∂wi using one-sided finite difference (FD), automatic
differentiation (AD) using TFad<double> and the complex-step (CS)
using std::complex<double>. All CPU times are relative to eval-
uation of the dissipation term d(. . .).

float-point computations that AD does not. Second, the CS method recomputes the value of the dissipation
function d over and over again for each separate column of ∂d/∂wi while the AD method only computes
the value of d once independent of the number of columns in the Jacobian being computed. A third factor
is that none of the vendors provided implementations of std::complex<> uses the expression template
(ET) technique to reduce the number of temporaries which are typically generated by operator overloading
but not when ET is used.

The last interesting issue to discuss is how radically different the performance varies for the handling of the
scalar types TFad<double> and std::complex<double> as compared to double among these
different compilers. The relative performance of TFad<double> varies all the way from 7.5 for g++ to
57.4 for cxx. The relative performance of 7.5 for g++ is amazingly good considering that in terms of flops,
the lower bound is 1 + 5 = 6 in the best case (i.e. all ’+’ and − operations) and as high as 1 + 5(5) = 26 in
the worst case (all ’/’ operations). We did not get an exact flop count for the AD approach but we suspect
that the relative number of flops is significantly greater than 7.5 (since there are a lot of multiplications and
these multiplications double the number of multiplications in the derivative evaluations) so the AD code
actually exceeds what would be predicted from the idea flop count. The case of 57.4 for cxx is almost
double the worst-case flop count. Clearly a good C++ compiler is needed to make the use of C++
programming constructs, such as the handling of derived data types and expression templates, efficient.

5.5 Conclusions

We have considered various approaches to compute Jacobian-vector products for a ANSI C++
implementation of a finite-volume discretion of the Euler equations. Non-invasive and invasive hybrid

62

symbolic/AD strategies that pre-compute and store Jacobian sub-matrices at the mesh-object level and then
assemble Jacobian-vector products at the mesh-object level may result in computations nearly five times
faster than one-sided finite differences. In addition, these derivative computations are accurate to machine
precision. We also found that low storage on-the-fly black-box uses of AD as the edge level can result in
derivative computations that are very competitive in speed with FD methods and require little knowledge of
the actual edge-level computations. However, exploiting the structure of the computations at a lower level
and combining symbolically derived and coded derivatives with AD resulted in significant improvements in
CPU time and storage. Conclusions and observations are summarized as follows:

1. Hybrid symbolic/AD approaches are well suited to discretization methods for PDEs due to the
hierarchal structure of such methods. Hybrid symbolic/AD methods can result in very accurate and
affordable derivative computations without having to rewrite an entire code but instead focus
differentiation tools on lower-level computations based on mesh objects.

2. These types of applications of AD generally do not require sophisticated features such as the special
sparsity and check-pointing handling for storage management that are the focus of many of the
current groups performing research in AD [38, 100]. This type of use of AD, therefore, allows for
more effort to be focused on low level efficiency where many of the current AD tools for ANSI C++
can improve.

3. One should start an effort to provide derivative computations by applying AD at the least intrusive
level possible where it is computationally realistic. This results in an implementation of derivative
computations that are accurate to machine precision very quickly which then allows efforts to be
directed to other types of functionality as needed. Only when more efficient derivative computations
are needed should an attempt be made to symbolically differentiation deeper into a code. Too much
time can be spent trying to prematurely optimize certain computations without good economic or
other justification and the desire to prematurely symbolically differentiate and hand code derivatives
for every expression is one such area. If nothing else, having a correct derivative computation using a
non-invasive AD approach provides a means to test later efforts to implement more efficient
derivative computations.

4. Any new or existing C++ project that is considering derivative computations should template on the
scalar type as much computational C++ code as possible. Templating code by the scalar type not
only allows the use of AD but other techniques such as interval analysis, extended precision
arithmetic and complex arithmetic.

5. Symbolic differentiation is not always efficient or affordable even though theoretically such an
approach should result in the best quality differentiation code. Too much implementation effort is
necessary to provide symbolic derivatives that are more efficient than those generated automatically
by AD.

6. The complex-step method for differentiation is analogous to automatic differentiation but less
efficient (and technically less accurate). Therefore, since many good AD classes for C++ are
available, the complex-step method for the computation of derivatives should never be seriously
considered for production use in ANSI C++ codes. However, as an extra validation approach, the use
of the complex-step method in ANSI-C++ codes may be very reasonable. In other languages that
lack support for operator overloading but yet support complex arithmetic, such as Fortran 77, the
complex-step method is a much more attractive alternative. CS performs more flops than AD, even
for a single derivate propagation. In addition, complex types are not well optimized in C++
compilers.

63

Chapter 6

Comparison of Operators for
Newton-Krylov Method for Solving
Compressible Flows on Unstructured
Meshes

6.1 Introduction

Newton Krylov methods (NK) represent an ‘inexact’ variant of Newton’s method in which the linear solve
(inner iteration) is performed iteratively to within a prescribed tolerance. This approach is appealing for
solving large sparse nonlinear systems due to the excellent convergence behavior of Newton’s method
combined with the scalability and less severe memory constraints of iterative linear solvers compared to
direct linear solvers. A potential drawback of NK, however, lies in the inexact nature of the linear solve
reducing the quadratic rate of convergence associated with exact application of Newton’s method. Other
sources of inexactness which could prevent quadratic convergence and which are explored in this study
consist of approximate and infrequent construction of the Jacobians and/or their corresponding
preconditioners. Oftentimes, the penalty of reduced nonlinear convergence rate can be more than
compensated by much cheaper linear solves. This is dependent on details of the construction and solution
of the linear system, can be problem-dependent, and is the focus of our study presented here.

We examine several ways of implementing NK for solving steady-state compressible flows on unstructured
three-dimensional (3D) meshes. The implementations differ in the way the Jacobian and preconditioner
operators of the linear systems are constructed and applied and are described more fully in the Nonlinear
Solvers section. The operators arise from discretizing the governing equations using a node-centered
finite-volume method. Control-volumes and control-volume surfaces are defined by the median dual of the
primal finite element mesh. Node and edge-based data structures are defined in which volumes are
associated with nodes and control-surfaces are associated with edges and boundary nodes [19] [20] [152]
[197]. Residual equations are constructed by looping over nodes and edges. First-order accurate upwind
spatial discretizations are based on piece-wise constant values within a cell and require only a single pass
over nodes and edges to construct the residual equations. Second-order spatial accuracy typically involve
MUSCL extrapolation which requires one pass over the mesh to construct and store nodal gradients and

64

possibly gradient limiters, and a second pass for constructing the residual. This approach allows us to
perform the residual computations by looping over edges and nodes only.

From a global perspective, the structure of the Jacobian for second-order accurate upwind schemes requires
distance-two connectivity information for the nodes within the mesh. This represents a dramatic increase in
memory for storage and in flops for filling these entries compared to a first-order accurate discretization.
Moreover, several choices exist for computing nodal gradients and their limiters, and some of these can be
quite complex and even nondifferentiable. For these reasons, we have chosen to base all Jacobian and
preconditioner constructions on distance-one (first-order) connectivity information only. Second order
information is taken into account using a matrix-free (MF) implementation, where instead of forming and
then using the Jacobian matrix, the matrix-vector product required in the Krylov linear solver is
approximated by a finite-difference. Since the finite-difference is formed by differencing two residual
vectors, only two residual vectors need occupy memory at any given time. This leads to a dramatic
reduction in memory requirements.

While a matrix-free implementation of NK obviates the need to construct a Jacobian matrix, convergence
of the linear solve (inner iteration) is typically extremely slow without the use of preconditioning. Hence,
there is still a need to form, if even approximately, a matrix to be used as a preconditioner. Our experience
as well as that of others has shown this issue to be critical in making NK a viable means of reducing overall
CPU cost relative to other methods.

We describe the implementation and performance of the various operators applied to finding steady-state
solutions on unstructured meshes. The next section briefly summarizes the governing equations followed
by a section describing the discretization of these equations over an unstructured mesh via the finite volume
method and the approximate analytic preconditioner operators that result from the discretized equations.
Next, we give details of the nonlinear solver algorithm and operator choices provided by the NOX
nonlinear solver library. This is followed by a presentation of the results. Finally, we summarize our results
and discuss current and future research.

6.2 Governing Equations

In integral form the governing equations can be written as

∫
V

∂W
∂t

dV +
∮

Γ
(Fc − Fv) · n dΓ = 0 (6.1)

whereW = {ρ, ρu, ρv, ρw, ρE}T is the solution vector of conserved variables;

Fc · n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ρui)ni

(ρu1ui + pδi1)ni

(ρu2ui + pδi2)ni

(ρu3ui + pδi3)ni

((ρE + p)ui)ni

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
65

is the inviscid flux vector; and

Fv · n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

τi1ni

τi2ni

τi3ni

(−qi + ujτij)ni

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
is the viscous flux vector. In the above equations, ρ is the density; ui = u, where u = u1, v = u2, and
w = u3 are velocity components in each Cartesian direction, xj ; p is the pressure; E is the total energy,
defined by E = e + (u2 + v2 + w2)/2; e is the specific internal energy, defined by e = CvT ; Cv is the
specific heat at constant volume; T is the temperature, defined for an ideal gas by p = ρRT ; R is the gas
constant, ni = n, is the surface normal vector, and δij is the Kronecker delta. We also define a the primitive
state vector asU = {ρ, u, v, w, p}T .

The viscous stress tensor is given by,

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk
δij (6.2)

where µ is the molecular viscosity coefficient. The heat flux vector is assumed to follow Fourier’s Law,

qi = −κ
∂T

∂xi
(6.3)

and a constant Prandtl number, Pr is used.

On a solid impermeable surface in the case of inviscid flow, the velocity vector must be tangent to the
surface, u · n = 0 and there is no mass or heat flux crossing the boundary and so the the flux function
becomes,

Fb = F · nb =

⎧⎨⎩
0

pnb

0

⎫⎬⎭ .

On solid no-slip boundaries, u = 0 is inforced in a strong manner, in addition if the surface temperature is
desired a bounary temperature is specified. Farfield boundary conditions are defined by an assumed infinity
stateU∞ and applied as the right state to the Reimann solver resulting in a boundary flux.

6.3 Algorithmic Formulation

The compressible flow code, Premo, uses the SIERRA framework [77], which provides common services
to application codes such as user-input parsing, bulk mesh-data input/output, interfaces to linear and
nonlinear solvers, inter-mesh transfers, parallel communications, dynamic load balancing, and adaptivity.

Premo is a node-centered, edge-based, finite-volume, algorithm similar the formulations of Haselbacher
and Blazek [107] and Luo et al. [152].

Control volumes and surfaces are defined by the median dual of the input finite-element mesh. This
construction results in non-overlapping, space-filling, control volumes that are associated with nodes.
Control-surface area vectors are area-weighted averages and are stored on the edge.

66

If we define volume-averaged values (W), we can write the semi discrete form of Eq. (6.1) as,

∂WI

∂t
=

−1
δVI

∑
J∈NE(I)

(Fc
IJ − Fv

IJ)|δΓIJ | = 0 (6.4)

where I is the current node (i.e., current control volume), δVI is the control volume, NE(I) is the set of
nodes connected to node I by edge IJ , J is the second node on the edge, |δΓIJ | is the magnitude of the
control-surface area. The convective and viscous flux functions are evaluated at the edge midpoint and
depend on the reconstructed data, normal vector and nodal gradients Fc

IJ = F(U+
I ,U−

J ,nIJ) and
Fv

IJ = F(UI ,∇UI ,UJ ,∇UJ ,nIJ).

On slip boundaries,
∂WI

∂t
=

−1
δVI

∑
J∈NE(I)

(Fc
IJ − Fv

IJ)|δΓIJ | + Fb|δΓb
I | = 0 . (6.5)

The advection scheme that Premo currently uses is the approximate Riemann solver of Roe [183] with the
entropy fix of Liou and van Leer [148] and the implementation closely follows that of Whitaker [216]. This
schemes require a left (+) and right(-) state in order to evaluate the interface fluxes.

First order accuracy is achieved by assuming a piecewise constant state within control volumes and
interface values are just the node values themselves,

U+
I = UI (6.6)

U−
J = UJ . (6.7)

For higher-order schemes, a piecewise linear variation within the cells is assumed. Reconstruction of the
interface values use a multi-dimensional MUSCL extrapolation [207] [19] along with the average nodal
gradient. The Green-Gauss volume-averaged gradient is obtained by solving a surface integral∫

V
∇φdV = δV∇φ =

∮
Γ

φn dΓ .

The discrete form is given by,

∇φI ≈ 1
δVI

∑
J∈NE(I)

(
φI + φJ

2

)
nIJ |δΓIJ | (6.8)

which is an edge-based formula. For boundary nodes,

∇φI ≈ 1
δVI

∑
J∈NE(I)

(
φI + φJ

2

)
nIJ |δΓIJ | + φInb

I

∣∣∣δΓb
I

∣∣∣ . (6.9)

Linear reconstruction using MUSCL on either side of an interface is obtained by the following,

U+
I = UI + Φ(∆+

I ,∆−
I)
(

∇UI · ∆r
2

)
(6.10)

U−
J = UJ − Φ(∆+

J ,∆−
J)
(

∇UJ · ∆r
2

)

67

where ∆r = xJ − xI is a displacement vector, and Φ = [0, 1] is a gradient limiter. Gradients are limited by
the van Albada limiter, similar to that used by Luo et al. [152] which is computed locally on each edge.
The van Albada limiter is written as,

Φ(a, b) =
ab + |ab| + ε

a2 + b2 + ε
(6.11)

and the arguments are defined by,

∆+
I = UJ − UI (6.12)

∆−
I = 2∇UI · ∆r − (UJ − UI)

∆+
J = 2∇UJ · ∆r − (UJ − UI)

∆−
J = UJ − UI .

The Roe flux function can be written as,

Fc
IJ =

1
2

(
F(W+

I ,nIJ) + F(W −
J ,nIJ) − |Ã|(W −

J − W+
I)
)

(6.13)

where A = ∂F
∂W is the flux Jacobian matrix and |Ã| = |A(W̃+

I , W̃ −
J ,nIJ)| is evaluated using an average

state (̃·) defined by Roe [183]. We have implemented three approximations to the Jacobian based on
linearizing eq. 6.13. The first is referred to as AD which is the exact differentiation of eq. 6.13 based on
edge data and is evaluated using automatic differentiation [32] [98]

∂FAD
I

∂WI
= I

δV
∆t

+
1
2

(
A(WI ,nIJ) + |Ã| − ∂|Ã|

∂WI
(WJ − WI)

)
∂FAD

I

∂WJ
=

1
2

(
A(WJ ,nIJ) − |Ã| − ∂|Ã|

∂WJ
(WJ − WI)

)
. (6.14)

The second approximation denoted (ROE) was suggested by Luo et al. [154], neglects the variation of the
dissipation matrix with respect toW,

∂FROE
I

∂WI
= I

δV
∆t

+
1
2

(
A(WI ,nIJ) + |Ã|

)
∂FROE

I

∂WJ
=

1
2

(
A(WJ ,nIJ) − |Ã|

)
(6.15)

and the third approximation (SD) is the Jacobian with respect to a simplified flux function that assumes
symmetric artificial dissipation, also suggested by Luo et al. [153],

FIJ =
1
2

(F (WI ,nIJ) + F (WJ ,nIJ) − |λIJ |(WJ − WI)) (6.16)

and the approximate Jacobian terms are,

∂FSD
I

∂WI
= I

δV
∆t

+
1
2

(A(WI ,nIJ) + |λIJ |I)

∂FSD
I

∂WJ
=

1
2

(A(WJ ,nIJ) − |λIJ |I) (6.17)

68

where |λIJ | is the spectral radius of the flux Jacobian matrix and I is the identity matrix.

Evaluating the viscous flux vector requires constructing primitive variable gradients at edge midpoints.
Gradients are constructed by blending edge node differences with nodal gradients,

∇UIJ =
(∇UI + ∇UJ)

2
(6.18)

+
(

UJ − UI − (∇UI + ∇UJ)
2

· ∆rIJ

)
∆rIJ

|∆rIJ |2 .

Viscosity, conductivity and velocity components appearing in the energy dissipation terms are evaluated as
the average of the two node values. The support for these gradients include distance-two nodes. Therefore,
exact discrete Jacobians cannot be contained within the edge graph. Instead, only the node differences are
considered in the analytic representation of the Jacobian terms,

∇UIJ ≈ (UJ − UI)
∆rIJ

|∆rIJ |2 . (6.19)

This results in a very efficient algorithm for evaluating the terms but is exact only on Cartesian grids.

In all cases, whether it be the evaluation the spatial residual equations, eq. 6.4 or the nodal gradients or an
approximation to the Jacobian operator, assembly only requires looping over edges and nodes.

6.4 Steady-State Solution Strategies

6.4.1 Newton-based Strategies

For this work, steady state solutions are sought. This amounts to seeking a solution for eq. (6.1) for which
the time derivative term is zero. With the exception of explicit time integration, all methods in this work are
implicit-based and employ Newton-Krylov solutions (discussed later) of systems of nonlinear equations to
drive the discretized compressible fluid flow equations to steady-state. Spatial discretization of eq. (6.1)
leads to a system of nonlinear algebraic equations given generally by

F(W) =
˜∂W
∂t

+ R(W) = 0 (6.20)

whereW is the vector of unknowns, and R(W) is the spatial residual equations which have no explicit
time derivative dependencies. A straightforward approach to solving for steady-state would seek a solution
toR(W) = 0. However, such an approach proves intractable in practice due to the poor quality of any
linearization of the problem and the difficulty iterative linear solvers have in seeking their solutions.

Consequently, ways of making the problem easier are sought by selecting forms for ˜∂W
∂t . Within the

context of a Newton-Krylov method, these forms typically produce what amounts to a diagonal mass
matrix which can dramatically facilitate the linear solves.

In this work, we seek solutions of the steady-state problem R(W) = 0 by solving a sequence of problems
of the form of eq. (6.20) in which the stabilizing term represented by ˜∂W

∂t is gradually removed. Each

69

Table 6.1. Solution Strategies for Steady-State.
Method Residual, F̃ Jacobian, J̃

Transient W−Wt−∆t

∆t + R 1
∆tI + ∂R

∂W
Pseudo R kI + ∂R

∂W
Transient
Homotopy (1 − λ)(W − Wa) (1 − λ)I

+λR +λ ∂R
∂W

problem in the sequence is solved by one of several variations of a Newton-Krylov method which differ in
the choice of Jacobian and preconditioner operators. Efficient testing of the many Jacobian/preconditioner
operator choices (along with associated options) is enabled by interfacing the compressible flow code,
Premo, to a library of nonlinear solver algorithms, NOX [136], currently being developed at Sandia
National Laboratories.

A sequence of nonlinear problems is generated by choosing a strategy to manipulate the time derivative
term of eq. (6.20). This work considers three possibilities summarized in Table 6.1.

6.5 Transient

This strategy simply attempts to find a steady-state solution by integrating in time until all transients have
vanished. Using an implicit time integration scheme allows for unconditional stability with respect to the
time-step size, ∆t. Table 6.1 represents implicit time integration using backward Euler, the simplest and
most stable choice. Though adversely affecting the accuracy of the time-dependent solutions, choosing
large time steps can lead to faster steady-state solutions being obtained. It should be noted that explicit time
integration can be applied to the same equations to march the solution to steady-state without requiring the
solution of a nonlienar system of equations at each time step. However, the time step size is constrained by
stability requirements.

6.6 Pseudo-Transient

On the surface, this technique appears to be a modification of the Transient approach with the residual
equation consisting of the true steady-state residual and the Jacobian corresponding to that for the
steady-state residual with a user-controlled modification to the diagonal. In fact, the method can be
obtained by treating time t as simply a parameter (pseudo-time), evaluating the spatial residual of eq. (6.20)
at the updated state of the unknowns with this residual approximated to first order and using a
finite-difference approximation for the (pseudo-) time-derivative. Denoting pseudo-time steps using
subscripts, let

∆Wn = Wn+1 − Wn . (6.21)

We then have

R(Wn+1) ≈ R(Wn) +
∂R(Wn)

∂W
∆Wn (6.22)

70

which can be substituted for R into eq. (6.20) along with a discretization of the pseudo-time derivative to
yield

∆Wn

∆t
= −Rn − ∂Rn

∂W
∆Wn (6.23)

where Rn ≡ R(Wn). Letting k = 1/∆t and rearranging gives

J̃∆Wn = −F̃n (6.24)

as defined in Table 6.1.

Our implementation of the Pseudo-Transient technique is also different from a strict extension of the
Transient technique. Whereas each time step in the Transient approach can require several nonlinear
iterations for convergence, we apply one and only one nonlinear iteration for each Pseudo-Transient step.
This is due to the fact that Pseudo-Transient is in reality an ineact Newton method for the steady-state
problem in which the Jacobian does not correspond exactly to the residual but is instead adjusted to
improve the quality of the Jacobian matrix and thereby facilitate the linear solve. We also choose to
increase the pseudo-time step (decrease k) at each step as follows:

∆tn = fn
CFL∆t0 (6.25)

where fCFL > 1 is a ramp factor. For some problems with complex physics, eg., shocks, turbulence, etc.,
use of a monotonically increasing ∆t can lead to catastrophic failures such as NaN, resulting from the
nonlinear solver attempting to sample inadmissible solution states (i.e. negative density). The nonlinear
solver library NOX provides checks for such failures and allows the application code, Premo, opportunity
to recover from these without terminating the simulation. In this work, we choose to simply reduce the
pseudo-time step by half and resume the solution process with the last good solution vector. Hence, for
catastrophic failures,

∆tn = 0.5∆tn−1 (6.26)

Wn = Wn−1 . (6.27)

6.7 Homotopy

Homotopy originates from ideas associated with parameter continuation and is closely related to
Pseudo-Transient. The idea is to introduce a fictitious continuation parameter λ and a representative
solution stateWa. A simple linear problem corresponds to λ = 0 and the final steady-state problem to
λ = 1. A sequence of problems begins with λ = 0 and steps through values of λ, choosing step sizes
adaptively based on how difficult the previous nonlinear problem in the sequence was to obtain.

We employ Homotopy using an additional Library Of Continuation Algorithms (LOCA), also being
actively developed at Sandia National Laboratories, which builds on top of NOX and uses NOX for its
nonlinear solves. More information about continuation methods (for both real and homotopy parameters)
can be found from Salinger et al [192].

71

6.8 Newton-Krylov Based Solver

Regardless of which of the strategies of Table 6.1 is adopted, all require systems of nonlinear algebraic
equations to be solved for each problem in the sequence leading to steady-state. Each nonlinear iteration is
of the form

J̃n∆Wn = −F̃n (6.28)

where the expressions of the Jacobian J̃ and residual F̃ are given in the table. In accordance with Newton’s
method, the Jacobian reflects sensitivities of each equationF̃i with respect to each field variable Wj ,

J̃n
ij =

∂F̃i(Wn)
∂W n

j

, 1 ≤ i, j ≤ N (6.29)

for a system with N equations and N variables. Iterations are continued until a user-specified convergence
is achieved, eg ||F̃n|| ≤ εa, ||F̃n||/||F̃0|| ≤ εb , ||∆Wn|| ≤ εc, etc.

Each nonlinear iteration of eq. (6.28) requires a linear system of equations to be solved. For very large
problems, eg. N ≥ 105, memory and operation counts become prohibitive for direct solvers. Iterative
methods circumvent these and are more naturally suited to implementation on massively parallel
architectures where data is distributed among O(1000) processors. However, iterative methods can exhibit
extremely slow convergence behavior for ill-conditioned or poorly scaled problems. The success of solving
eq. (6.28) with iterative methods therefore relies on adequate preconditioning which reduces the number of
linear solve iterations without incurring excessive cost in forming and applying the preconditioner.

The work presented here is based on solving eq. (6.28) using the iterative method GMRES [190] and
various means of preconditioning. We select GMRES in order to accommodate nonsymmetric Jacobian
operators arising from upwinding methods. We consider several choices for forming and/or applying the
action of the Jacobian and preconditioner operators. These choices are described next.

6.9 Matrix-Free Operator (MF)

The matrix-free operator is used exclusively as a Jacobian operator and is based on the matrix-free
Newton-Krylov ideas described by Brown and Saad [44]. Matrix-free provides the action of the Jacobian
on a vector using a directional derivative approximated via finite differences. This is accomplished using
two function evaluations to approximate the matrix-vector product needed for each iteration of the linear
solve in eq. (6.28). Hence, the linear solve involves repeated action of the Jacobian on a vector, eg., p,
(used to generate each Krylov vector), which can be approximated as follows:

J̃p ≈ F̃(W + εp) − F̃(W)
ε

. (6.30)

Because the matrix-free operator is based on a directional derivative in which all equation sensitivities to
all problem variables are determined together, all terms described in the Algorithmic Formulation section
which contribute to the residual, including those from second-order spatial discretization, are taken into
account. This operator is the only one we consider in which second-order spatial effects are taken into
account.

72

6.10 Finite-Difference Coloring Operator (FDC)

Whether used as a numerical approximation to the Jacobian or as a preconditioner or both, the matrixJ̃ can
be explicitly formed using divided differences in which each component,J̃ij , is formed by perturbing
variable Wj , evaluating equation F̃i and evaluating a divided difference,

J̃ij ≈ F̃i(W + εej) − F̃i(W)
ε

. (6.31)

Forming the numerical approximation in a brute-force fashion would require N2 function evaluations
which quickly becomes prohibitive for N ≥ O(103). An alternative is to group variables into colors in
which every function depends on at most one variable of a particular color. This allows all variables of a
given color to be perturbed simultaneously leading to a cost for numerically formingJ̃ of cN function
evaluations with c being the number of colors. The number of colors reflects the degree of variable
interaction within a problem discretization and, for the discretization of this work, results in c < 100
regardless of mesh refinement. The grouping into colors represents a one-time overhead which is amortized
over the course of the simulation. Application of matrix coloring transforms eq. (6.31) into the following,

J̃ij(m) ≈ F̃i(W + εcm) − F̃i(W)
ε

, (6.32)

where cm is the mth color vector of length N with ones in positions associating a variable with this color,
and subscript j(m) reflects a mapping from locations in the color vector to columns in the Jacobian matrix
indicating to which column the divided difference value computed with this color belongs.

Our application of finite-difference coloring is restricted to matrix structure and values corresponding to
first-order spatial discretization. This results in proper accounting of all equation sensitivities to problem
variables for spatially first-order problems but represents an approximation to spatially second-order
problems. For this reason, the finite-difference coloring operator is used only as a preconditioner for
second-order problems and as both the Jacobian and preconditioner operators in spatially first-order
problems. The coloring algorithm is based on the greedy algorithm [191] and is implemented in NOX
along with other refinements such as adaptive selection of the perturbation parameter ε for each variable in
order to mitigate the effects of poor problem scaling.

We note that it is possible to use the explicitly computed matrix based on first-order spatial discretizations
as both the Jacobian and preconditioner for spatially second-order problems, a technique sometimes
referred to as Deferred Correction. While this represents another type of inexact Newton method which we
could and will explore in future studies, we do not address it here to prevent our presentation from
becoming overly lengthy.

6.11 Approximate Analytic Operator (AD)

A third type of operator having potentially many forms consists of analytic expressions for the partial
derivatives of eq. (6.29). In general, complexity of the expressions, non-differentiability of some terms and
needed flexibility to interchange many choices of limiters, gradient operators, etc. makes computing
complete analytic expressions for all anticipated scenarios impractical or impossible. We consider three
approximations to the analytic Jacobian of the first-order discretization including the exact expressions

73

evaluated using automatic differentiation [98]. The other two approximations neglect terms that are
contained in the exact edge expressions.

6.12 Preconditioning

Having summarized the choices for both preconditioning and Jacobian operators we wish to briefly
comment here on our means of preconditioning. When either the approximate analytic operator
(sometimes evaluated using automatic differentiation) or the finite-difference coloring operator is used as
the preconditioner, eq. (6.28) is solved using right-preconditioning [190] as follows,

J̃M−1y = −F̃ (6.33)

M∆W = y (6.34)

whereM is the preconditioning operator. When preconditioning is applied to solving eq. (6.28) using the
matrix-free Jacobian operator, eq. (6.30) takes the modified form

J̃M−1p ≈ F̃(W + εM−1p) − F̃(W)
ε

. (6.35)

and each finite-difference based matrix-vector operation now requires application of the preconditioning
operator M. For this work, we use incomplete LU factorization with no fill-in (ILU0) of the matrixM as
the preconditioner for the iterative linear solver. The linear solve is performed using the generalized
minimum residual (GMRES [190]) iterative method. Both GMRES and application of the preconditioner
are performed using the AztecOO linear solver library [15] via an interface provided by NOX.

Results

Spatially First-Order Subsonic Inviscid Flow

We begin by presenting a comparison of explicit and implicit time integrations to a steady-state for a
relatively simple subsonic inviscid flow discretized spatially to first-order. Specifically, we consider
subsonic flow over a NACA 0012 airfoil at zero angle-of-attack. The freestream conditions areMa = 0.6,
T∞ = 300 K, P∞ = 101325 N/m2, R = 287.0 J/kgK, and γ = 1.4. The ideal gas assumption is used. An
O-type mesh containing 129 × 33 × 2 nodes is used. Our flow solver requires that the mesh contain at least
one element in each of three dimensions so that what in this case could be solved using only
two-dimensions is solved here on a three-dimensional mesh (though only a single element thick). The
infinity boundary was placed approximately 25 chord lengths from the airfoil. All test cases have been run
in serial on a 2.4GHz Pentium4 based PC running Linux with Gnu gcc3.1 compilers. For this
configuration, the flow field is relatively smooth and no shock waves form. The explicit time integration
results employ a one-stage Runge-Kutta scheme with time step size based on CFL = 1. The implicit time
integrations use a backward Euler temporal discretization and are distinguished by the Jacobian and
preconditioner operators used to solve each nonlinear problem occurring a each time step.

Figure 6.1 shows convergence histories for five different simulations. The five cases can be distinguished
by the following symbols; AD NK O1 uses the exact analytic Jacobian for the preconditioning matrix and
the Jacobian operator; AD MF O1 uses the exact analytic Jacobian for the preconditioning matrix and the
matrix-free option for the Jacobian operator; FDC MF O1 generates the preconditioning matrix using

74

Table 6.2. Euler 1st order Results Summary I.
Method Jac/Prec Time Final ||R||
Exp ∆t N/A. 32.1 hrs 1.8e−8

Imp ∆t AD/AD 40 min 1.0e−12

Imp ∆t AD/MF 70 min 1.0e−12

Imp ∆t FDC/MF 115 min 1.0e−12

Table 6.3. Euler 1st order Results Summary II.
Method Jac/Prec Time Final ||R||
Exp ∆t N/A. 32.1 hrs 1.8e−8

Pseudo ∆t FDC/FDC 49.5 min 8.9e−13

HomoT FDC/FDC 34.4 min 6.5e−16

HomoT AD/AD 14.2 min 6.5e−14

finite-difference-coloring and uses the matrix-free option for the Jacobian operator, NO PREC MF O1
uses no preconditioner and the matrix-free option for the Jacobian operator; and finally, EXP O1 used
explicit time integration.

All implicit time integrations use an adaptive time step based on the ratio of L1 spatial residual norms
||R||1 and are constrained to lie within the range [1 : 5000], i.e.

∆tn+1 = ∆tn
||Rold||1
||Rnew||1

(6.36)

where old and new are typically n − 1 and n time states respectively. The perturbation parameter ε used in
the matrix-free differencing is ε = 10−6. For each nonlinear iteration, the linear problem, solved using
GMRES, is considered converged when the linear residual has been reduced to 10−4 of its initial value, and
the nonlinear iteration is considered converged when the nonlinear residual norm is either reduced by a
factor of 108 or attains a value of 5E − 1. All preconditioning involves right preconditioning using the
ilu(0) factors of the preconditioning matrix.

The results of fig. 6.1 are summarized in Table 6.2 with the exception of the unpreconditioned implicit time
integration simulation which terminated when the nonlinear solve failed to reach convergence. This
comparison of explicit and implicit time integration to steady-state demonstrates the dramatic improvement
in time to solution achievable using an implicit-based approach as well as the necessity of adequate
preconditioning in these methods.

Using the same inviscid flow problem, we next extend our comparison to strategies that no longer preserve
time-accurate solutions but instead seek significant savings in cpu time. These are the strategies of Table
6.1, and their performance relative to the time integration stategies can be seen in Table 6.3. All of these
techniques use an explicitly formed Jacobian (as opposed to matrix-free) and utilize the same matrix as the
preconditioner. Notably, all demonstrate comparable or better reductions in cpu time compared to explicit
time integration.

Spatially Second-Order Flows

75

For this and the remainder of the results section, we use second-order spatial discretizations. Among other
things, this has the effect of expanding the influence of variables at a node to its second nearest neighbors
(by virtue of the gradient computation). For our flow code, Premo, based on unstructured meshes, this
presents a difficult challenge in trying to determine all equation sensitivities to all variables as needed for a
complete Jacobian matrix. However, the nature of the directional derivative used in the matrix-free
Jacobian operator does account for these sensitivities. Consequently, we utilize this Jacobian operator for
the remainder and focus our attention on the performance of preconditioners in terms of cost and
robustness. A further result of this choice is that the absence of an explicitly formed Jacobian matrix
precludes our present implementation of Homotopy which requires the matrix in order to modify its
diagonal. We will rectify this deficiency and report new results in the future. So, all subsequent results
utilize a matrix-free Jacobian operator.

In fig. 6.2 the convergence histories for five different transient simulations are shown for the second-order
discretization. The second-order cases are referred to by the following symbols; AD MF O2 uses the exact
first-order analytic Jacobian for the preconditioning matrix (evaluated by automatic differentiation) and the
matrix-free option for the Jacobian operator, ROE MF O2 uses the first two term of the exact first-order
analytic Jacobian for the preconditioning matrix (eq. 6.15) and the matrix-free option for the Jacobian
operator, SD MF O2 uses the first term and a symmetric dissipation term based on the spectral radius of
the flux Jacobian matrix for the preconditioning matrix (eq. 6.17) and the matrix-free option for the
Jacobian operator, FDC MF O2 uses the finite-difference-coloring of the first-order discretization to form
the preconditioning matrix and the matrix-free option for the Jacobian operator, and EXP O2 uses explicit
time integration. Again, a significant gain in efficiency compared to the explicit method is achieved for all
of the implicit methods. The FDC MF O2 matrix is the most expensive to compute, requiring ∼ 60 spatial
residuals and this reflects in the overall cpu time. It should be noted that we have tried using a ”modified
preconditioning” technique where the preconditioning matrix is recomputed less frequently than once per
nonlinear iteration with some success, however, we have not used that option in the present case. Of the
three cases using an analytic preconditioning matrix, the exact edge-based (AD) is significantly more
expensive to evaluate than the other two approximate methods, however it is a better estimate of the true
Jacobian and results in lower overall cpu times.

In addition to using a matrix-free Jacobian operator, all subsequent results of this work are obtained using
Pseudo-Transient to achieve steady-state solutions.

Transonic Inviscid Flow at Angle-Of-Attack

We now present results for a transonic flow over the NACA0012 airfoil obtained using three different
preconditioners. The flow is represented byMa = 0.8 with the airfoil at 1.25o angle of attack. We use the
van Albada limiter with limiter coefficient of 1.0E − 8. For each nonlinear iteration the linear problem
convergence is set to 10−4, and Pseudo-Transient stepping is continued until the steady-state residual norm
is reduced to 10−12 of its initial value, ||Rn||2/||R0||2 ≤ 10−12. Two analytic-based preconditioners are
considered: AD represents a complete accounting of all terms for a first-order spatial discretization of the
Euler equations computed using forward automatic differentiation (eq. 6.14), and ROE represents only the
first two terms computed analytically (eq. 6.15). The third preconditioner operator, FDC, computes the
same matrix as AD but via finite-differnces (using coloring). Note that AD and FDC preconditioner
matrices are the same as those for the previous results for first-order subsonic Euler but now provide an
inexact representation of the Jacobian operator. Use of FDC with the matrix-free (MF) Jacobian operator
differs from AD and ROE in a couple of ways. First, it is recomputed infrequently, once every 20
Pseudo-Transient steps for this problem. This is done to amortize the cost of computing the matrix.

76

Table 6.4. Transonic Inviscid flow over NACA 0012 airfoil; Ma=0.8,
α = 1.25 deg.

Prec. fCF L Freq. L Its. NL Its. CPU

(max) sec.

FDC 1.20 20 27312 307 20820

(5E3)

AD 1.05 1 24128 377 11226

(1E4)

ROE 1.05 1 43145 *1000 17940

(1E3)

Second, the sensitivity of the transonic Euler flow to numerical error requires that FDC (and the MF) use
second-order accurate centered differences to achieve convergence to 12 orders reduction in residual norm.
The convergence history associated with the preconditioner choices is shown in fig. 6.3 and solution
statistics are summarized in Table 6.4. The rate of convergence using FDC is steeper than for AD and ROE
due to the more aggressive ramp in step size fROE . However, the accrual of numerical error associated
with FDC allows the more accuratre AD to catch up. The cheaper cost of computing the preconditioner
matrix using AD as well as its better quality (due to absence of numerical error) results in a reduction in
total time to solution to almost half of that for FDC. The quality can be seen by the average number of
inner iterations (each iteration for the linear solve) being 64 for AD and 89 for FDC. The ROE
preconditioner is very cheap to compute but insufficiently captures the character of the MF Jacobian such
that it ultimately fails to reach steady-state within the alloted number of Pseudo-Transient steps.

Supersonic Inviscid Flow We now increase the flow toMa = 2.0, revert to zero angle of attack and repeat
the comparison of preconditioner operators just described. We again define linear solve tolerance to be
10−4 but now only require a reduction in spatial residual norm of 10 orders of magnitude for convergence
of the Pseudo-Transient run. We found the ROE preconditioner to be inadequate to obtain converged
steady-states for this more difficult problem. Hence, we report performance statistics for AD and FDC
preconditioners in Table 6.5. Convergence behavior is shown in fig. 6.4.

Though AD is inexpensive to comopute relateive to FDC, we attempt to improve the cpu time by
infrequent computation of the AD preconditioner. However, this is observed to actually worsen overall
solution time by making the linear solves more difficult. Accrued errors in the linear solves also leads to a
few more Pseudo-Transient steps being required. The convergence beavior exhibits noise toward the end of
the run and is most likely due to chatter of the limiter, which for all but the last run in Table 6.5 uses a
limiter coefficient of 1.0E − 8. The last FDC run in the table is marked by an asterisk and uses a limter
coefficient of 0.1. The effect of this limiter coefficient value is clearly seen in the convergnce plot in which
the chatter is eliminated.

Laminar Viscous Flow

The next test case is laminar flow over NACA 0012 airfoil at zero angle-of-attack. The Flow conditions
were;Ma = 0.2, and Re = 5000. Linear solver tolerance was 1.0E − 4 and the nonlinear tolerance was
1.0E − 8. The minimum CFL was CFLmin = 1.0. The mesh was 193 × 65 × 2, with normal spacing
equals 1.0e − 4 in chord units. There were 129 nodes on the airfoil surface. The wake region contained 10

77

Table 6.5. Inviscid flow over NACA 0012 airfoil with Ma=2.0 and zero
angle-of-attack.

Prec. fCF L Freq. L Its. NL Its. CPU

(max) sec.

AD 1.05 1 7772 231 3732

(5E3)

AD 1.05 20 9510 255 4053

(5E3)

FDC 1.2 20 7256 136 3347

(5E3)
∗FDC 1.2 20 6892 141 2896

(5E3)

Table 6.6. Laminar flow over NACA 0012 airfoil at zero angle-of-
attack.

Prec. fCF L Freq. L Its. NL Its. CPU

(max) sec.

FDC 1.1 20 13347 137 21002

(1E7)

AD 1.1 20 11861 137 22493

(1E7)

AD 1.1 1 11209 137 18373

(1E7)

ROE 1.1 1 13949 153 25860

(1E5)

chords with 33 mesh points. The farfield was placed 25 chords away from the airfoil. The predicted drag
coefficient was Cd = 0.0505 compared with a value Cd = 0.0547 obtained by Knight [135]. Table 6.6
presents a summary of the solver parameters and fig. 6.5 presents the history of convergence. While the
nonlinear convergence is amost identical in all three cases, because the quaility of the AD preconditioner,
fewer linear iterations were required and the total cpu time was a minimum.

Laminar Viscous Flow At Angle-Of-Attack The next solver test the solution laminar flow over the
NACA 0012 airfoil at angle-of-attack. The same mesh as was used in the previous section was also used
here. The flow conditions wereMa = 0.8, Re = 5000 and α = 10 degrees. Linear tolerance was set at
1.0E − 4 and the nonlinear tolerance was 1.0E − 8. The minimum CFL was CFLmin = 10.0. The force
coefficients were compared with Forsyth and Jiang [83], case A2. These authors report Cl = 0.4393 and
Cd = 0.2708. Our predictions are, Cl = 0.4197 and Cd = 0.1891. Table 6.7 presents a summary of the
solver parameters. Note that the table reports statistics for each run to the point it reaches the same residual
norm reduction as the ROE case. Figure 6.6 presents the history of convergence and fig. 6.7 presents the
history of convergence of the force coefficients. This shows that a large CFL initially is benificial
however, later if it is too large, it becomes detrimental to the linear convergence.

Turbulent Flow At Angle-Of-Attack The final test of the solver is the simulation of turbulent flow over a
NACA 0012 airfoil at angle-of-attack. The flow conditions were; Re = 1.86 × 106,Ma = 0.3 and

78

Table 6.7. Laminar flow over NACA 0012 airfoil at α = 10 deg.
Prec. fCF L Freq. L Its. NL Its. CPU

(max) sec.

FDC 1.2 25 11322 83 37171

(1E6)

AD 1.1 1 13705 220 114930

(5E4)

ROE 1.1 1 43587 765 56156

(1E4)

α = 3.59 degrees. The Splart-Allmaras model equation was solved fully coupled with the Navier-Stokes
equations. The model equation is presented in the appendix. For this test case, a c-mesh was used
containing 225 × 81 × 2 nodes, with normal spacing next to the surface, ∆n = 1.0 × 10−5 and the initial
tangential spacing at the leading edge was ∆t = 5.0 × 10−4 in chord units. There were 161 nodes on the
surface, and the wake region was 10 chord lengths and contained 33 grid nodes. Experimental data was
obtained from Luo et al. [151], and the experimental data can also be found in [5]. The FDC
preconditioner operator was used without any modification to solve this flow problem. Convergence
histories from two simulations with CFLmax = 500, 1000 and modified preconditioner frequency, 10 and
20 respectively, are presented in fig. 6.8. The convergence is nearly identical until the maximum timestep
size is reached. Soon after, the simulation having the larger CFL diverges. As the eddy viscosity evolves
near the surface, stiffness from source terms make it harder to solve. The linear tolerance was loosened to
1.0E − 3 and the total cpu time was 63419 sec. Six orders-of-maginitude reduction in residual was
adequate to converge the lift coefficient as seen in fig. 6.9. This behavior is similar to that reported by
Anderson and Bonhaus [10]. A better solution strategy may be one that employs an adaptive CFL like that
used in the transient results reported eariler. The prediction with experimental data in the form of surface
pressure coefficient is presented in fig. 6.10. The suction peak is significantly under predicted though the
prediction aft of the quarter chord is in good aggreement. We anticipate that the agreement will improve
with grid refinement. The important point of this test is that the FDC/MF solver required no modifications
in order to solve a problems with additional equations and volume source terms.

Conclusions

Our work has demonstrated the feasibility of various strategies to obtain steady-state solutions for a broad
array of compressible flow problems on unstructured meshes. We demonstrated significant reductions in
time to solution using strategies other than explicit or implicit time integration including Pseudo-Transient
and Homotopy. The success of these depends strongly on the choice of Jacobian and preconditioner
operators available, the details of their implentations and some degree of user-tuning. A vast array of
choices is provided by interfacing to a nonlinear solver package, NOX, and enhancements such as
Homotopy are available by easy expansion of the interface to LOCA, a Library of Continuation Algorithms.

We have shown a small sampling of the many trade-offs between robustness and efficiency for a
representative set of compressible flows. Our experience has been that Pseudo-Transient stepping
employing matrix-free Jacobian operator with an adequate preconditioner provides the most robustness
with efficiency primarily determined by the choice and implementation of the preconditioner operator.
Much work remains to optimize the performance of our curent approaches, eg., better perturbation
parameter selection, using the preconditioning matrix with more (ILUT) or less (block diagonal) detail,
using automatic/adaptive strategies for Pseudo-Transient step sizes, linear solver tolerance, etc. We plan on

79

making progress in these directions with results forthcoming.

Several options are not explored in this work such as Deferred Correction, in which an inexact Jacobian is
used as the Jacobian operator, as well as the performance of Homotopy using a matrix-free Jacobian
operator. Issues associated with parallel implementations represents another level that will recieve future
attention. This work represents a good starting point for such investigations and provides in its current form
a capability for addressing challenging problems of interest both to Sandia and the compressible flow
community.

Appendix

This appendix shows the Spalart-Allmaras turbulence model used in the turbulent flow simulations [198].
The model equation is given by,

∂ρ̄ν̂
∂t + ∂

∂xi
(ρ̄ũiν̂)

= −Cω1fωρ̄
(

ν̂
d

)2 + Cb1ρ̄ν̂Ŝ

+ ∂
∂xj

(
µeff

∂ν̂
∂xj

)
+ Cb2

σ ρ̄ ∂ν̂
∂xj

∂ν̂
∂xj

where the turbulent viscosity is given by,
µt = ρ̄ν̂fν1 (6.37)

and the source terms are,

fν1 =
χ3

χ3 + C3
ν1

, fν2 = 1 − χ

1 + χfν1
(6.38)

fω = g

(
1 + C6

ω3
g6 + C6

ω3

)1/6

, χ =
ν̂

ν

g = r + Cω2(r6 − r), r =
ν̂

Ŝk2d2

Ŝ = (2ΩijΩij)1/2 +
ν̂fν2

k2d2

Ωij =
1
2

(
∂ũi

∂xj
− ∂ũj

∂xi

)
(6.39)

with the following list of constants,

µeff = ρ̄
ν + ν̂

σ
(6.40)

k = 0.41, Cb1 = 0.1355, Cb2 = 0.622

σ = 2/3, Cω1 =
Cb1

k2 +
1 + Cb2

σ
Cω2 = 0.3, Cω3 = 2.0, Cν1 = 7.1.

80

Figure 6.1. Convergence history vs. cpu time for the first-order simu-
lations.

Figure 6.2. Convergence history vs. cpu time for the second-order
simulations.

81

Figure 6.3. Convergence history vs. # nonlinear iterations for inviscid
transonic flow over a NACA 0012 airfoil.

Figure 6.4. Convergence history vs. # nonlinear iterations for the su-
personic inviscid flow over a NACA 0012 airfoil with Ma=2.

82

Figure 6.5. Convergence history vs. # nonlinear iterations for laminar
flow over NACA 0012 airfoil with α = 0 deg.

Figure 6.6. Convergence history vs. # nonlinear iterations for laminar
flow over NACA 0012 airfoil with α = 10 deg.

83

Figure 6.7. Convergence history of the force coefficients vs. # nonlin-
ear iterations.

Figure 6.8. Convergence history vs. # nonlinear iterations for turbultent
flow over NACA 0012 airfoil.

84

Figure 6.9. Convergence history vs. # nonlinear iterations of the lift
coefficient.

Figure 6.10. Comparison of surface pressure coefficient to experimen-
tal data (symbols) found in AGARD, 1979.

85

Chapter 7

Towards Shape Optimization

7.1 Introduction

The previous chapters discussed the development of hybrid symbolic/AD1 methods and the computation of
an exact first-order approximation for an efficient preconditioner. In this chapter, forward and adjoint linear
operators are described for the second-order approximation of the MUSCLE2 scheme. Although actual
shape optimization results were not available at the writing of this report, the adjoint formulation for the
second-order scheme has been completed and the implementation into Premo has been started. We
consider issues involved in formulating and implementing the basic functions and sensitivities for the
optimization of a second-order finite-volume method for gas dynamics using the Euler equations.

The general notation for an optimization problem has already been presented in a previous chapter, but is
repeated here in a different notation to accommodate additional constraints and derivative terms. Also, our
presentation is intended to be precise so that this formulation can be mapped directly to code. In fact, we
have developed a Matlab code that uses the same notation as our C++ prototype implementation that uses
the hybrid automatic differentiation strategies.

The discretized shape optimization problem can be stated in general form as:

min
w,α

φ(w,α) (7.1)

s.t. r(w,α) = 0 (7.2)

ηl,L ≤ ηl(w,α) ≤ ηl,U , for l = 1 . . . Nη (7.3)

where:
w ∈ IRnw are the state variables,
α ∈ IRnα are the shape parameters,
r(w,α) ∈ IRnw+nα → IRnw is the state constraint residual function,
φ(w,α) ∈ IRnw+nα → IR is the objective function,
ηl(w,α) ∈ IRnw+nα → IR is the lth auxiliary constraint (l = 1 . . . Nη), and

1automatic differentiation
2Monotonic Upwinding Centered Scheme for the Conservation Law Equations

86

ηl,L, ηl,U ∈ IR are the bounds on the lth auxiliary constraint (l = 1 . . . Nη).

Vectors such as w and α can be viewed as simple objects where each component is a scalar value. The
shape optimization process will require shape changes from some reference mesh with node positions xr to
a new mesh x = xr + u where x are the new node positions and u are the displacements from the
reference mesh. The mesh nodes are partitioned into boundary and interior nodes with positions xI and
xB , and displacements uI and uB respectively. The shape of the boundary variables uB is changed
through a set of implicitly related “shape” parameters α.

A range of optimization methods can be considered to solve the shape optimization problem, however, the
number of optimization variables are likely to be large enough to warrant an adjoint-based method. For
additional details on different approaches to continuous optimization methods we refer the reader to the
following reference [174]. In addition, in previous work we identified various levels of optimization
implementation approaches and presented computational comparisons that highlight the computational
advantages of adjoint and full-space methods [206]. One of the critical computations of the optimization
problem is the formation of the reduced gradient of some function ψ(w,α) ∈ IRnw+nα → IR

∂ψ̂

∂α
=

∂ψ

∂w
∂w
∂α

+
∂ψ

∂α
∈ IR1×nα (7.4)

where
∂w
∂α

≡ − ∂r
∂w

−1 ∂r
∂α

∈ IRnw×nα (7.5)

and ψ(w,α) represents the objective function φ(w,α) or one of the auxiliary constraints ηl(w,α), for
l = 1 . . . Nη, and ψ̂(α) = ψ(w(α), α)

To compute (7.4), the adjoint variables must be first solved as

z =
∂r
∂w

−T ∂ψ

∂w

T

∈ IRnw (7.6)

followed by
∂ψ̂

∂α
= zT ∂r

∂α
+

∂ψ

∂α
∈ IR1×nα (7.7)

which requires the adjoint matrix-vector product

q =
∂r
∂α

T

z ∈ IRnw . (7.8)

Note that there are often auxiliary constraints ηl(w,α) that only involve the design variables (i.e. ∂ηl
∂w = 0).

In these cases the adjoint problem in (7.6) need not be solved and the reduced gradient for these constraints
is just ∂η̂l

∂α = ∂ηl
∂α . In general, these types of constraints do not significantly increase the expense in solving

the optimization problem.

There are several different types of computations that go into the evaluation of the residual, the objective
function and the auxiliary constraints. These computations, listed in the order of evaluation for the forward
problem, are:

1. Shape parameterization

87

S(α,uB) : α → uB

This procedure specifies changes in shape uB of the boundary given current values of the shape
parameters α. This mapping is performed by an implicit function S(α,uB) where ∂S

∂uB
is

nonsingular and ∂S
∂α also exists. Note that the number of shape parameters in α must be less than or

equal to the number of boundary node positions uB.

2. Mesh movement
M(uB ,x) : uB → x
This is a smooth procedure that moves mesh nodes x given a change from the reference mesh
boundary shape uB where ∂M

∂x is nonsingular and ∂M
∂uB

exists. Typically a spring and mass procedure
is used here to move the mesh nodes, but mesh quality is compromised in certain situations. We have
developed a more stable method based on a Laplacian and a Bi-Laplacian mesh movement.

3. Dual mesh
n = Dn(x) : x → n
V = DV (x) : x → V
The purpose of the dual mesh is to map characteristics of a finite-element mesh into a finite-volume
mesh. These functions must be able to take the new positions of the nodes x and be able to
determine the edge normals n (edge-based) and control volumes V (node-based) given some
description of the mesh (i.e. different elements). For this mapping, the Jacobian matrices ∂Dn/∂x
and ∂DV /∂x must exist.

4. Residual evaluation
r(w,x,n, V) : (w,x,n, V) → r
This is the evaluation of the node-based residual r given the state variables w, the nodal positions x,
the edge normals n and the control volumes V . Note that the Jacobian ∂r

∂w must be nonsingular and
the Jacobians ∂r

∂x ,
∂r
∂n and

∂r
∂V must also exist.

Given the above structure of the residual evaluation, using the chain rule, and substituting all the derivative
requirements for shape parameterization, mesh movement and the dual mesh, we obtain the expression

∂r
∂α

=
(

∂r
∂x

+
∂r
∂n

∂n

∂x
+

∂r
∂V

∂V

∂x

)
∂x

∂uB

∂uB

∂α

=
(

∂r
∂x

+
∂r
∂n

∂Dn

∂x
+

∂r
∂V

∂DV

∂x

)
∂M
∂x

−1 ∂M
∂uB

∂S
∂uB

−1 ∂S
∂α

. (7.9)

Consequently the adjoint solve (7.8) can be performed as a set of elementary operations:

q =
∂r
∂α

T

z

=
∂S
∂α

T ∂S
∂uB

−T ∂M
∂uB

T ∂M
∂x

−T (∂r
∂x

T

+
∂Dn

∂x

T ∂r
∂n

T

+
∂DV

∂x

T ∂r
∂V

T)
z. (7.10)

From (7.10) it is obvious that many different types of separate adjoint computations (both solves and
mat-vecs) are involved in the computation of the overall adjoint matrix-vector product in (7.8). Therefore,
we can focus on each atomic adjoint computation separately.

88

7.2 Residual and state computations

The general formulation for the shape optimization problem as described in the previous section applies to
any set of physics (such as Euler, Navier Stokes, structural dynamics, etc). However, we have applied this
formulation to the Euler equations and in the following sections we describe the formulation for a
node-centered, finite-volume, higher-order, upwinding scheme. This formulation is the same as the in the
previous chapter without the viscous forces. It should be noted that the notation is slightly different,
primarily because of different authoring efforts and also as a result of specific needs for shape optimization.

7.2.1 The Euler equations

The Euler equations in differential form are

∂ρ

∂t
+ ∇ · ρu = 0,

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇p = 0,

∂ ρE

∂t
+ ∇ · [u(ρE + p)] = 0,

(7.11)

in which ρ, u, p, and E denotes the density, velocity vector, pressure, and total energy per unit volume,
respectively. The coordinate invariant formulation (7.11) holds for space dimension Nd = 1, 2, or 3. The
equation of state closes the system; for a perfect gas, we have

p = (γ − 1)
(

ρE − 1
2
ρ |u|2

)
.

Introducing the conservative variables w and the flux function f given by

w =

⎛⎝ ρ
ρu
ρE

⎞⎠ , f =

⎛⎝ ρu
ρu ⊗ u + Ip

uρH

⎞⎠ , (7.12)

where ρH = ρE + p, the Euler equations (7.11) may be written in the compact form

∂w
∂t

+ ∇ · f = 0. (7.13)

Note the local vector w here can be thought of as one component of the global vector w in the discretized
form; see (7.1)–(7.3). This should not cause confusion since later each local vector will have a nodal
designation such as wi in the discrete case. Bold italic letters, such as u and I , are used for tensors of first
and second order, whereas bold upright letters are used for matrices of tensors, such as w and f . The fluid
velocity u is a “vector” in the continuum-mechanics meaning (a first-order tensor), whereas w and f are
(column) “vectors” in the linear-algebra meaning (matrices with one column). The use of the symbols w
and f is just for convenience and does not indicate a tensor structure. To prevent confusion, we will
minimize, as much as possible, the use of the term “vector”, instead referring to first-order tensors (for
objects like u) and 3-by-1 matrices (for objects like w).

89

w

Ω
Γ

V

Figure 7.1. A control volume having a nonzero intersection with a solid
wall Γw.

The flux function may be split in two parts, f = fN + fw, where

fN =

⎛⎝ ρu
ρu ⊗ u
uρH

⎞⎠ , fw =

⎛⎝ 0
Ip
0

⎞⎠ . (7.14)

A solid wall is characterized by the condition of no mass flux through the boundary, that is, n · u = 0 (n is
the outward-directed unit normal). Thus,

n · f = n · fw at wall boundaries. (7.15)

(The dot product of a first-order tensor, such as the boundary normal n, with the flux function f is defined
as the dot product applied on each row of f .)

Consider an arbitrary control volume V in the fluid domain Ω; the boundary of V may have a nonempty
intersection with a solid-wall boundary Γw, as in figure 7.1. Integrating equation (7.13) over V , using the
divergence theorem and expression (7.15) yields the integral form of the Euler equations

d

dt

∫
V

w dx +
∫

∂V \Γw

n · f dΓ +
∫

∂V ∩Γw

n · fw dΓ = 0; (7.16)

this is the basis for the finite-volume discretization below.

7.2.2 A node-centered finite-volume discretization of MUSCL type

Consider a meshing of the fluid domain Ω consisting of tetrahedrals or hexahedrals. (In 2D, the mesh
consists of triangles or quadrilaterals.) Assume that the boundary ∂Ω can be partitioned into a solid-wall
part Γw and a free-stream part Γ∞. Our formulation will support hybrid meshes because we essentially
translate the mesh into a set of nodes and edges. Let V(Ω) denote the set of mesh nodes in the strict interior
of the domain, and let V(Γw) and V(Γ∞) denote the set of mesh nodes at the wall and at the free-stream,
respectively. The set of all boundary nodes may be denoted V(∂Ω) = V(Γw) ∪ V(Γ∞) and the set of all
nodes V(Ω) = V(Ω) ∪ V(∂Ω).

90

nij

Boundary

i j

k
nk

ijn

ijni
a

b

Figure 7.2. Control volume norms in 2D

Left : A control volume associated with an internal node and a control volume associated with a
boundary node.

Middle: There are surface vectors nij associated with each edge, and surface vectors nk associated
with each boundary node.

Right: The surface vectors are defined as the vector sum of pairs of boundary normals associated
with the dual mesh: nij = na

ij +nb
ij , nk = na

k +nb
k. Note that the lengths of the normals are equal

to the lengths of corresponding tangents.

Moreover, let Ni denote the set of nodes being nearest neighbors to mesh node i, that is, the nodes that are

connected to node i with an edge. We associate a surface vector nij with each edge
i j−→, and we associate a

surface vector ni with each boundary node i. The normals are computed from a dual mesh; in 2D the dual
mesh is obtained by joining the edge midpoints with the cell centroid. Figure 7.2 exemplifies the
construction of control volumes, surface and boundary normals in 2D. Similar constructions are used in 3D
and for other shapes of the control volumes. Note that, by construction,

nji = −nij . (7.17)

Also note that the normals are not of unit length.

Using the control volumes associated with the dual mesh, a node-centered finite-volume discretization may
be obtained from the integral form (7.16). In the steady case, we consider∑

j∈Ni

[
1
2
(
f i+
ij · nij

)
+

1
2

(
f j−
ij · nij

)
+ d

(
wi+

ij ,wj−
ij , nij

)]
= 0 ∀i ∈ V(Ω),

∑
j∈Ni

[
1
2
(
f i+
ij · nij

)
+

1
2

(
f j−
ij · nij

)
+ d

(
wi+

ij ,wj−
ij , nij

)]
+ ni · fBCi = 0 ∀i ∈ V(∂Ω),

(7.18)

where we use the notation fi+ij = f(wi+
ij), f j−

ij = f(wj−
ij) for the flux function evaluated at the extrapolated

states wi+
ij and wj−

ij (explained below). Explicit expressions for the Roe-dissipation term

d
(
wi+

ij ,wj−
ij ,nij

)
is given in the Appendix, and the boundary flux is

ni · fBCi =

{
ni · fwi i ∈ V(Γw),
1
2 (fi · ni) + 1

2 (f∞ · ni) + d (wi,w∞,ni) i ∈ V(Γ∞),

where fwi = fw(wi), with fw from expression (7.14), and f∞ = f(w∞), where w∞ is the fluid state at the
free stream.

91

Node-based objects are given a single subscript such as wi and wj while edge-based objects are given a
double subscript such as nij and nij . Additional classifiers are added such as math accents and superscripts
(e.g. wi+

ij) for further classification.

If zeroth-order (i.e. no) extrapolation is used, that is, wi+
ij = wi and wj−

ij = wj , the scheme (7.18) reduces
to a first-order upwind scheme. However, in the MUSCL spirit, we will use a limited linear reconstruction
to obtain a higher-resolution scheme, that is, we define

µi+ = µi + φ
(
∆+µi,∆−µi

)
∇hµi · tij

2
,

µj− = µj − φ
(
∆+µj,∆−µj

)
∇hµj · tij

2
,

(7.19)

where tij = xj − xi is the tangent vector along the edge pointing from node i to node j. The
reconstruction is done component by component µ of either the conservative or primitive variables. Note
that these two reconstructions are not equivalent. The discrete gradient operator in (7.19) is

∇hµi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|Vi|
∑
j∈Ni

µi + µj

2
nij i ∈ V(Ω),

1
|Vi|

∑
j∈Ni

µi + µj

2
nij +

1
|Vi|

µini, i ∈ V(∂Ω)
(7.20)

where |Vi| is the cell volume of the dual control volume Vi centered at node i. Moreover, the slope limiter
is a real-valued function of two variables φ = φ(a, b). Two possible choices of limiters are

φ(a, b) =

⎧⎪⎪⎨⎪⎪⎩
ab + |ab|

a2 + b2 + ε
(van Albada),

2
ab + |ab|

(a + b)2 + ε
(van Leer).

(7.21)

The arguments of the limiter in expression (7.19) are

∆+µi = ∆−µj = µj − µi,

∆−µi = 2∇hµi · tij − (µj − µi),
∆+µj = 2∇hµj · tij − (µj − µi).

(7.22)

The reconstruction of the conservative variables can be summarized in vector form. First, the gradient
computation gi = ∇hwi ∈ IR(Nd+2)×(Nd) is

gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2|Vi|
∑
j∈Ni

(wi + wj) ⊗ nij i ∈ V(Ω),

1
2|Vi|

∑
j∈Ni

(wi + wj) ⊗ nij +
1

|Vi|
wi ⊗ ni, i ∈ V(∂Ω)

. (7.23)

Later, it will be convenient to define the functions

wi+
ij = wi+

ij

(
wi,wj,pi

ij

)
(7.24)

wj−
ij = wj−

ij

(
wi,wj,p

j
ij

)
(7.25)

92

with pi
ij = gi · tij and pj

ij = gj · tij . These functions are defined as

∆+
ijwi = wj − wi (7.26)

∆−
ijwi = 2pi

ij − (wj − wi) (7.27)

∆+
ijwj = 2pj

ij − (wj − wi) (7.28)

∆−
ijwj = wj − wi (7.29)

wi+
ij = wi + 1/2Φ(∆+

ijwi,∆−
ijwi)pi

ij (7.30)

wj−
ij = wj − 1/2Φ(∆+

ijwj,∆−
ijwj)p

j
ij (7.31)

where Φ(∆+
ijwi,∆−

ijwi) = diag{φ(∆+
ijµi,∆

−
ijµi)} is a diagonal matrix containing the component-wise

evaluations of the limiter.

Lemma 1. The following symmetry properties hold.

wi+
ij = wi−

ji wj−
ij = wj+

ji

7.2.3 State computations

7.2.3.1 Gradient and residual

The left sides of equation (7.18) is the residual ri at node i, which can be written

ri =

⎧⎪⎪⎨⎪⎪⎩
∑
j∈Ni

rij i ∈ V(Ω),∑
j∈Ni

rij + ni · fBCi i ∈ V(∂Ω),
(7.32)

where

rij =
1
2
(
f(wi+

ij) · nij

)
+

1
2
(
f(wj−

ij) · nij

)
+ d

(
wi+

ij ,wj−
ij ,nij

)
(7.33)

is the contribution to residual ri from the edge
i j−→. By interchanging indices i and j, we obtain the

contribution to residual rj from the edge
j i−→,

rji =
1
2
(
f(wj+

ji) · nji

)
+

1
2
(
f(wi−

ji) · nji

)
+ d

(
wj+

ji ,wi−
ji ,nji

)
= −1

2
(
f(wj−

ij) · nij

)
− 1

2
(
f(wi+

ij) · nij

)
− d

(
wi+

ij ,wj−
ij ,nij

)
= −rij,

(7.34)

where we have utilized Lemma 1.

The computation of the residual can be accomplished in two steps. The first step computes the gradient of
each component of the conservative (or primitive) variables, which will be needed in the
reconstruction (7.24)–(7.25),

Algorithm 8. GRADIENT COMPUTATION.

93

1. Set gi ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

(a) gi ← gi +
1

2|Vi|
(wi + wj) ⊗ nij ,

(b) gj ← gj − 1
2|Vj |

(wi + wj) ⊗ nij .

3. For each boundary node k:

(a) gk ← gk +
1

|Vk|
wi ⊗ nk.

In the second loop over edges and boundary nodes, the variables are extrapolated and the residual is
computed making use of the skew symmetry property (7.34):

Algorithm 9. COMPUTATION OF THE RESIDUAL.

1. Set ri ← 0 for each i ∈ V(Ω)

2. For each edge
i j−→:

(a) ri ← ri + rij

(b) rj ← rj − rij , where

rij =
1
2
(
f(wi+

ij) · nij

)
+

1
2
(
f(wj−

ij) · nij

)
+ d

(
wi+

ij ,wj−
ij ,nij

)
and where wi+

ij and wj−
ij are computed according (7.24)–(7.25).

3. For each boundary node k:

(a) rk ← rk + nk · fBCk

7.2.3.2 Forward state Jacobian-vector product

Newton-based solvers for equation (7.18) and SAND optimization algorithms require solves with the linear
operator ∂r/∂w. Typically, linear systems such as this are solved with an iterative method (such as
GMRES). An essential computation in an iterative linear solver is the repeated application of the linear
operator

δr =
∂r
∂w

δw (7.35)

at some point (w,α) for arbitirary vectors δw. Such a linear operator can be implemented by first forming
a sparse matrix for ∂r/∂w up front before using it in repeated applications or by using a matrix-free

94

method. A popular matrix-free method is to use directional-finite differences but it is well know that these
methods suffer from serious numerical problems. Instead, here we consider machine-accurate matrix-free
methods for assembling (7.35).

One approach for assemblying (7.35) is to apply forward AD to the edge-level C++ functions used in
Algorithm 8 and Algorithm 9. While this is relatively efficient and easy to program, more invasive and
specialized hybrid symbolic/AD approaches can yield significant improvements in storage and CPU time;
see Chapter 5. Below, the symbolic linearized operator is derived.

Let an arbitrary set of states wi, i ∈ V(Ω), be given for a set mesh. Linearizing residual expression (7.32)
about this fluid state yields

δri = δrinti =
∑
j∈Ni

⎡⎣1
2

∂
(
f i+
ij · nij

)
∂wi+

ij

δwi+
ij +

1
2

∂
(
f j−
ij · nij

)
∂wj−

ij

δwj−
ij

+
∂d
(
wi+

ij ,wj−
ij ,nij

)
∂wi+

ij

δwi+
ij +

∂d
(
wi+

ij ,wj−
ij ,nij

)
∂wj−

ij

δwj−
ij

⎤⎦ i ∈ V(Ω), (7.36a)

δri = δrinti +
∂
(
fBCi · ni

)
∂wi

δwi i ∈ V(∂Ω). (7.36b)

Defining local Jacobians associated with edge
i j−→ and boundary node i,

Ji+
ij =

1
2

∂
(
f i+
ij · nij

)
∂wi+

ij

+
∂d
(
wi+

ij ,wj−
ij ,nij

)
∂wi+

ij

,

Jj−
ij =

1
2

∂
(
f j−
ij · nij

)
∂wj−

ij

+
∂d
(
wj−

ij ,wj−
ij ,nij

)
∂wj−

ij

,

JBCi =
∂
(
fBCi · ni

)
∂wi

(7.37)

allows expression (7.36) to be written in the shorter form

δri =

⎧⎪⎪⎨⎪⎪⎩
∑
j∈Ni

[
Ji+

ij δwi+
ij + Jj−

ij δwj−
ij

]
i ∈ V(Ω),∑

j∈Ni

[
Ji+

ij δwi+
ij + Jj−

ij δwj−
ij

]
+ JBCi δwi i ∈ V(∂Ω).

(7.38)

Differentiating the reconstruction (7.24)–(7.25) yields the relation between δwi+
ij , δw

j−
ij and corresponding

quantities at the nodes

δwi+
ij =

∂wi+
ij

∂wi
δwi +

∂wi+
ij

∂wj
δwj +

∂wi+
ij

∂pi
ij

δpi
ij ,

δwj−
ij =

∂wj−
ij

∂wi
δwi +

∂wj−
ij

∂wj
δwj +

∂wj−
ij

∂pj
ij

δpj
ij ,

(7.39)

95

where
∂wi+

ij

∂wi
,

∂wi+
ij

∂wj
,

∂wi+
ij

∂pi
ij
,

∂wj−
ij

∂wi
,

∂wj−
ij

∂wj
and

∂wj−
ij

∂pj
ij

are diagonal matrices containing the partial derivatives of

the reconstruction functions in (7.24)–(7.25). Expressions for these diagonal Jacobians are given in
Appendix 12.4

Lemma 2. The following symmetry properties hold.

Jj+
ji = −Jj−

ij Ji−
ji = −Ji+

ij δwji
j+ = δwj−

ij , δwji
i− = δwi+

ij .

If the reconstruction (7.24)–(7.25) is done on the components of the primitive variables v,
expression (7.39) should be replaced by

δwi+
ij =

∂wi+
ij

∂vi+

[
∂wi+

ij

∂wi

∂vi

∂wi
δwi +

∂wi+
ij

∂wj

∂vj

∂wj
δwj +

∂wi+
ij

∂pi
ij

tij · ∇h
∂vi

∂wi
δwi

]
,

δwj−
ij =

∂wj−
ij

∂vj−

[
∂wj−

ij

∂wi

∂vi

∂wi
δwi +

∂wj−
ij

∂wj

∂vj

∂wj
δwj +

∂wj−
ij

∂pj
ij

tij · ∇h
∂vj

∂wj
δwj

]
.

(7.40)

As a consequence of the symmetries of Lemma 2, the linearized residual in expression (7.38) may be
computed as follows.

Algorithm 10. COMPUTATION OF THE LINEARIZED RESIDUAL.

The first edge loop computes the discrete gradient δgi = ∇hδµi ∀i ∈ V(Ω) (cf. (7.20)). Each
assignment should be repeated for each component δµi of δwi.

1. Set δgi ← 0 ∀i ∈ V(Ω)

2. For each edge
i j−→:

(a) δgi ← δgi +
1

2|Vi|
(δwi + δwj) ⊗ nij

(b) δgj ← δgj − 1
2|Vj |

(δwi + δwj) ⊗ nij

3. For each i ∈ V(∂Ω):

(a) δgi ← δgi +
1

|Vi|
wi × ni

The second edge loop assembles the linearized residual.

1. Set δri = 0 ∀i ∈ V(Ω)

2. For each edge
i j−→:

(a) δrij ← Ji+
ij δwi+

ij + Jj−
ij δwj−

ij ,

96

where Ji+
ij , J

j−
ij , δw

i+
ij , and δwj−

ij are computed by expressions (7.37) and (7.39).

(b) δri ← δri + δrij ,

(c) δrj ← δrj − δrij ,

3. For each i ∈ V(∂Ω):

(a) δri ← δri + JBCi δwi

Note that δw and δr can be any node-based vectors and therefore the above algorithm defines the
implementation of the forward linear operator δr = ∂r

∂wδw. The edge calculations involve the objects Ji+
ij

and Jj−
ij (Jacobians); and

∂wi+
ij

∂wi
,

∂wi+
ij

∂wj
,

∂wi+
ij

∂pi
ij
,

∂wj−
ij

∂wi
,

∂wj−
ij

∂wj
,

∂wj−
ij

∂pj
ij

(diagonal matrices containing derivatives

of the reconstruction). For minimum computational work in a Newton–Krylov solver, where the linearized
residual needs to be recalculated numerous times, these objects can be precomputed in one loop over the
edges and stored in an edge-based data structure. Similarly, the boundary Jacobian JBCi is computed and
stored by one loop over the boundary nodes. It is also possible to device corresponding algorithm when the
reconstruction is made on the primitive variables. Corresponding formulas will invoke the transformation
matrix ∂v/∂w and its inverse.

7.2.3.3 Adjoint state Jacobian-vector product

Here we consider the implementation of the adjoint state Jacobian-vector product

r∗ =
∂r
∂w

T

z (7.41)

where z, in addition to being an estimate of the adjoint state, may be any node-based vector of the proper
dimension. This operator is applied repeatedly in an iterative linear solver, such as GMRES, for the
solution of the adjoint system (7.6).

The linearized operator in (7.41) can be assembled using the reverse mode of AD at the edge level.
However, since this operator is applied repeatedly inside of an iterative solver, more effort is justified in
developing a hybrid symbolic/AD approach and this is the focus of the rest of this section.

This adjoint product is

r∗
i =

⎧⎪⎪⎨⎪⎪⎩
∑
j∈Ni

r∗
ij − ∇h · g∗

i for i ∈ V(Ω),∑
j∈Ni

r∗
ij − ∇h · g∗

i +
(
JBCi

)T
zi for i ∈ V(∂Ω),

(7.42)

in which

r∗
ij =

[
∂wi+

ij

∂wi
(Ji+

ij)T +
∂wj−

ij

∂wi
(Jj−

ij)T
]

(zi − zj) (7.43)

97

is the contribution from edge
i j−→ to the adjoint residual at node i, and

g∗
i =

∑
j∈Ni

[
∂wi+

ij

∂pi
ij

(Ji+
ij)T (zi − zj)

]
⊗ tij (7.44)

is an object of the same dimension as the flux function (7.14). The discrete divergence ∇h· in
expression (7.42) is defined by

∇h · fi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j∈Ni

1
2

(
1

|Vj |
fj · nij − 1

|Vi|
fi · nij

)
for i ∈ V(Ω),

∑
j∈Ni

1
2

(
1

|Vj |
fj · nij − 1

|Vi|
fi · nij

)
− 1

|Vi|
fi · ni for i ∈ V(∂Ω),

(7.45)

where fi is any object of the same dimension as the flux function (7.14). This adjoint Jacobian-vector
product is needed for the implementation of an iterative solver for the adjoint linear system in (7.6). The
edge-based algorithm for assembling the adjoint product is given below.

Algorithm 11. ADJOINT RESIDUAL COMPUTATION.

The first edge loop computes the residual contributions coming from (7.43) and the g∗i ’s of
expression (7.44).

1. Set g∗
i ← 0 ∀i ∈ V(Ω).

2. Set r∗
i ← 0 ∀i ∈ V(Ω).

3. For each edge
i j−→:

(a) qi
ij ←

(
Ji+

ij

)T (zi − zj)

(b) qj
ij ←

(
Jj−

ij

)T (zi − zj)

(c) r∗
i ← r∗

i +
∂wi+

ij

∂wi
qi

ij +
∂wj−

ij

∂wi
qj

ij

(d) r∗
j ← r∗

j +
∂wi+

ij

∂wj
qi

ij +
∂wj−

ij

∂wj
qj

ij

(e) g∗
i ← g∗

i +

[
∂wi+

ij

∂pi
ij

qi
ij

]
⊗ tij

(f) g∗
j ← g∗

j +

[
∂wj−

ij

∂pj
ij

qj
ij

]
⊗ tij

The second edge loop adds the contributions from the discrete divergence and the boundary terms in
expression (7.42).

1. For each edge
i j−→:

(a) r∗
i ← r∗

i − 1
2

(
1

|Vj |
g∗

j · nij − 1
|Vi|

g∗
i · nij

)

98

(b) r∗
j ← r∗

j − 1
2

(
1

|Vj |
g∗

j · nij − 1
|Vi|

g∗
i · nij

)
2. For each k ∈ V(∂Ω):

(a) r∗
k ← r∗

k +
(
JBCk

)T
zk − 1

|Vk|
g∗

k · nk

7.2.4 Adjoint geometric Jacobian-vector product

We now consider the simultaneous computation of the following three adjoint Jacobian-vector products

qx =
∂r
∂x

T

z, (7.46)

qn =
∂r
∂n

T

z, (7.47)

qV =
∂r
∂V

T

z, (7.48)

as required in (7.10), where z, in addition to being the adjoint state vector, may be any node-based vector
of the proper dimension.

The quantities qx, qn and qV can be computed together in a single edge loop. A simple way to compute
these quantities is to use the reverse mode of AD with the edge-level C++ functions that assemble the
residual in Algorithm 9.

This adjoint computation is only performed once in the computation of the reduced gradient (7.4).
Therefore, the iterative solution of the adjoint system (7.6) dominates and this adjoint computation does not
consume a significant percentage of the overall CPU time. As a result, this adjoint computation does not
warrent the effort to develop a more invasive hybrid symbolic/AD implementation.

7.2.5 Finite-volume dual-mesh algorithm

The computation of a the finite-volume dual mesh (i.e. control volumes Vi and edge norms nij) from the
positions of the nodes in the finite-element mesh (i.e. xi) is an important part of the residual computation.
First, the dual-mesh algorithm is described followed by the require adjoint computation.

Denote by K ∈ Th a finite-element mesh object K in the “triangulation” Th of the domain Ω. The mesh
object K may be a hexahedron, tetrahedron, pyramid, or prism. The boundary ∂K of mesh object K is
composed of subsurfaces ∂mK that are planar (tetrahedrons) or bilinear (hexahedrons). Similarly, the
boundary ∂(∂mK) of each subsurface ∂mK is composed of a number of straight edges ∂n∂mK
(figure 7.3). The dual mesh algorithm loops each subsurface of each finite element. For each edge in
current subsurface, the algorithm computes normal and cell volume contributions as depicted in Figure 7.3.

99

Denote by V(K), V(∂mK), and V(∂n∂mK) lists of mesh indices in the corners of K, ∂mK , and ∂n∂K,
respectively. The number of mesh nodes in these lists are denoted |V(K|) and |V(∂mK)|). For a
hexahedron, we have |V(K)| = 8 and |V(∂mK)| = 4. Each edge list V(∂n∂mK) contains two mesh
indices in and jn (or simply i and j if there is no risk of confusion). The formulas in Algorithm 12 produce
normals nij pointing from node i to node j and positive control volumes |Vi|, |Vj | if node i and j in the
edge list V(∂n∂mK) are given a positive orientation with respect to surface ∂mK (Figure 7.3), that is,
traveling from node xi to node xj corresponds to a counterclockwise direction along the edge of surface
∂mK viewed from outside of element K.

Algorithm 12. DUAL MESH ALGORITHM

First loop all elements

1. For each K ∈ Th :

(a) Set xK ← 1
|V(K)|

∑
i∈V(K)

xi

Loop all surfaces to current element

(b) For each ∂mK ⊂ ∂K:

i. Set x∂mK ← 1
|∂mK|

∑
i∈V(∂mK)

xi

Loop all edges of current surface
ii. For each ∂n∂mK ⊂ ∂(∂mK):

A. Set x∂n∂mK ← 1
2(xin + xjn)

B. Set nm
ij ← 1

2 (xK − x∂n∂mK) × (x∂mK − x∂n∂mK)

C. Set |V K
ij | ← 1

2nm
ij · (xjn − xin)

Now update edge normals and cell volumes

D. nij ← nij + nm
ij

E. |Vi| ← |Vi| + |V m
ij |

F. |Vj | ← |Vj | + |V m
ij |

Algorithm 12 repeatedly computes the normal contributions nm
ij .

7.2.5.1 Adjoint dual-mesh Jacobian-vector product

The composite adjoint operator in (7.10) requires the adjoint of the dual mesh algorithm. The required
operation is

y =
∂Dn

∂x

T

qn +
∂DV

∂x

T

qV , (7.49)

where qn and qV are given in (7.47) and (7.48).

The adjoint operation in (7.49) can be performed by appling the reverse mode of AD to the element-level
C++ function that performs the dual-mesh assembly in Algorithm 12.

100

nm
ij

xK

x∂mK

K

∂mK

xi xj∂n∂mK

|V m
ij |

Figure 7.3. The boundary ∂K of a mesh object K is composed of
faces ∂mK . There are 6 faces for a hexahedral K . The boundary of
each subsurface ∂mK is composed of straight edges ∂n∂mK . For a
quadrilateral face there are 4 edges. The dual mesh algorithm com-
putes contributionsnm

ij = 1
2 (xK − x∂n∂mK) × (x∂mK − x∂n∂mK) and

|V m
ij | = 1

2nm
ij · (xj − xi) to the normal nij and the cell volumes |Vi|,

|Vj | that are associated with the surface ∂mK , in the picture illustrated
by the front vertical face.

Just as is the case for the geometric residual Jacobian-vector product described in Section 7.2.4, the above
dual-mesh adjoint computation is only performed once in the computation of the reduced gradient and
therefore does not consume enough CPU time to justify a more invasive hybrid symbolic/AD
implementation.

7.3 Summary

Hybrid symbolic/AD3 methods were used to develop exact forward and adjoint linear operators for the
second-order accurate Euler equations. Shape optimization is the ultimate goal and we outline the
mathematical formulation to calculate the final reduced gradient of the objective function. This calculation
is dependent on a number of derivatives as a result of several dependencies, such as shape parameterization,
mesh movement, dual mesh, and the residual calculation. We derive this gradient calculation and break it
down into a series of fundamental steps. We use a finite-volume discretization which requires a dual-mesh
algorithm to translate the standard finite-element formatted mesh datasets to a finite-volume format. We
address the upwinding with a Monotonic Upwinding Centered Scheme for conservation law (MUSCLE)
and use a Roe dissipation sheme. The dissipation term is derived and included in the appendix.

3automatic differentiation

101

Chapter 8

The Development of Abstract Numerical
Algorithms and Interfacing to Linear
Algebra Libraries and Applications.

8.1 Introduction

One area of steady improvement in large-scale engineering and scientific applications is the increased
modularity of application design and development. Specification of publicly-defined interfaces, combined
with the use of third-party software to satisfy critical technology needs in areas such as mesh generation,
data partitioning, and solution methods have been generally positive developments in application design.
While the use of third party software introduces dependencies from the application developer’s perspective,
it also gives the application access to the latest technology in these areas, amortizes library and tool
development across multiple applications and, if properly designed, gives the application easy access to
more than one option for each critical technology area, e.g., access to multiple linear solver packages.

One category of modules that is becoming increasingly important is abstract numerical algorithms (ANAs).
ANAs such as linear and nonlinear equation solvers, methods for stability and bifurcation analysis,
transient solvers, uncertainty quantification methods and nonlinear programming solvers for optimization
are typically mathematically sophisticated but have surprisingly little essential dependence on the details of
what computer system is being used or how matrices and vectors are stored and computed. Thus, by using
abstract interface capabilities in languages such as C++, we can implement ANA software such that it will
work, unchanged, with a variety of applications and linear algebra libraries. Such an approach is often
referred to as generic programming [3].

In this chapter we describe a set of basic interfaces for the Trilinos Solver Framework (TSF) called
TSFCore as the common interface for (i) ANA development, (ii) the integration of an ANA into an
application (APP) and (iii) providing services to the ANA from a linear algebra library (LAL). By agreeing
on a simple minimal common interface layer such as TSFCore, we eliminate the many-to-many
dependency problem of ANA/APP interfaces. TSFCore is not primarily designed to be the most convenient
interface for the direct development of ANAs but it can be used in direct ANA development. Instead,
TSFCore is designed to make it easier for developers to provide the basic functionality from APPs and

102

LALs required for the implementation of ANAs. As an integral subcomponent of optimization, sensitivity
analysis stands to benefit from such a standard interface which can significantly reduce the overhead of
developing multiple interfaces for each home grown linear algebra system.

It is difficult to describe a set of linear algebra interfaces outside of the context of some class of numerical
problems. For this purpose, we will consider numerical algorithms where it is possible to implement all of
the required operations exclusively through well defined interfaces to vectors, vector spaces and linear
operators. The interfaces described here are the common denominator of all abstract numerical algorithms.

We assume that the reader has a basic understanding of sobject-orientation [86] and C++, and knows how
to read basic Unified Modeling Language (UML) [84] class diagrams. We also assume that the reader has
some background in large-scale numerics and will therefore be able to appreciate the challenges that are
addressed by TSFCore.

To motivate TSFCore, we discuss the context for TSFCore in large-scale (both in lines of code and in
problem dimensionality) numerical software. The major requirements for TSFCore are spelled out and this
is followed by an overview of the TSFCore linear algebra interfaces.

Bartlett et al. [25, 24] discuss the TSFCore interfaces in more detail.

8.2 Classification of linear algebra interfaces

Although we will discuss APPs, ANAs and LALs in detail later in this section, we want to briefly introduce
these terms here to make them clear. While there are certainly other types of modules in a large-scale
application, we only focus on these three:

• Application (APP): The modules of an application that are not ANA or LAL modules. Typically this
includes the code that is unique to the application itself such as the code that formulates and
generates the discrete problem. In general it would also include other third-party software that is not
an ANA or LAL module.

• Abstract Numerical Algorithm (ANA): Software that drives a solution process, e.g., an iterative
linear or nonlinear solver. This type of package provides solutions to and requires services from the
APP, and utilizes services from one or more LALs. It can usually be written so that it does not
depend on the details of the computer platform, or the details of how the APP and LALs are
implemented, so that an ANA can be used across many APPs and with many LALs.

• Linear Algebra Library (LAL): Software that provides the ability to construct concrete linear algebra
objects such as matrices and vectors. A LAL can also be provide a specific linear solver or a
preconditioner.

An important focus of this chapter is to clearly identify the interfaces between APPs, ANAs and LALs for
the purposes of defining the TSFCore interface.

The requirements for the linear algebra objects as imposed by an ANA are very different from the
requirements imposed by an APP code. In order to differentiate the various types of interfaces and the
requirements associated with each, consider Figure 8.1. This figure shows the three major categories of

103

APP Interface

APP

Vec
Mat

ANA

KrylovSolver

Vec

Preconditioner

LAL 1 LAL 2

1..*

1 111

1..*

1

1..*1..*1

ANA/LAL interface
Not Parallel Aware!

1

Interfaces within a
single LAL (e.g.
PETSc, Petra, Aztec,
ISIS++ etc.)
Parallel Aware!

ANA/APP interface
Not Parallel Aware!

APP/LAL interface
(e.g. Finite Element
Interface, FEI)
Parallel Aware!

1

Specialization
 / inheri tance

 Computes functions

BaseClass

DerivedClass

Multiplicity

Interface
/ abstract class

Implementation
/ subclass

text

Class2

Class3

1..*
Association

Interface
(abbreviated)

Note

UML Notation

Vector
Interface

LAL/LAL interfaces (e.g. Equation Solver Interface, ESI)
Parallel Aware!

Figure 8.1. UML [42] class diagram : Interfaces between abstract nu-
merical algorithm (ANA), linear algebra library (LAL), and application

(APP) software.

software modules that make up a complete numerical application. The first category is application (APP)
software in which the underlying data is defined for the problem. This could be something as simple as the
right-hand-side and matrix coefficients of a single linear system or as complex as a finite-element method
for a 3-D nonlinear PDE-constrained optimization problem. The second category is linear algebra library
(LAL) software that implements basic linear algebra operations [71, 9, 39, 204, 16, 164]. These types of
software include primarily matrix-vector multiplication, the creation of a preconditioner (e.g. ILU), and
may even include several different types of direct linear solvers. The third category is ANA software that
drives the main solution process and includes such algorithms as iterative methods for linear and nonlinear
systems; explicit and implicit methods for ODEs and DAEs; and nonlinear programming (NLP) solvers
[175]. There are many example software packages [16, 204, 164, 47, 31] that contain ANA software.

The types of ANAs described here only require operations like matrix-vector multiplication, linear solves
and certain types of vector reduction and transformation operations. All of these operations can be
performed with only a very abstract view of vectors, vector spaces and linear operators.

An application code, however, has the responsibility of populating vector and matrix objects and requires
the passing of explicit function and gradient value entries, sometimes in a distributed-memory parallel
environment; and this is the purpose of a APP/LAL interface. This interface involves a very different set of
requirements than those described above for the ANA/APP and ANA/LAL interfaces. An Examples of
APP/LAL interfaces can be found in the FEI [60].

Figure 8.1 also shows a set of LAL/LAL interfaces that allows linear algebra objects from one LAL to
collaborate with the objects from another LAL. Theses interfaces are very similar to the APP/LAL
interfaces and the requirements for this type of interface are also not addressed by TSFCore. The ESI [193]
contains examples of LAL/LAL interfaces.

104

TSFCore, as described in this chapter, specifies only the ANA/LAL interface. TSFCore-based ANA/APP
interfaces are described elsewhere (e.g. [24]).

8.3 Vectors in Numerical Software and Challenges in Developing Abstract
Interfaces

Vectors provide the primary foundation for the ANA-LAL and ANA-APP interfaces. Beyond transporting
vector objects back and forth to the APP and LAL interfaces, ANAs also need to perform various vector
reduction (e.g. norms, dot products) and transformation (e.g. vector addition, scaling) operations. In
addition, many specialized “nonstandard” vector operations must be performed. Examples of nonstandard
operations are presented below to help motivate our design, followed by a discussion of how current and
established approaches would attempt to handle these non-standard operations.

8.3.1 Variety of vector operations needed

Perhaps the primary distinction between vectors and other linear algebra objects is the large number of
non-standard operations that a complex ANA requires. In addition to the 15 BLAS [126] operations, many
other types of operations need to be performed. For example, some of the nonstandard operations an
interior-point optimization algorithm (e.g. OOQP [87]) may perform are

yi =

⎧⎪⎨⎪⎩
ymin − yi if yi < ymin

ymax − yi if yi > ymax

0 if ymin ≤ yi ≤ ymax
for i = 1...n, (8.1)

α ← {max α : x + αd ≥ β}, (8.2)

γ ← (x + αp)T (y + αq). (8.3)

The interior-point NLP algorithm described in [72] performs several more unusual vector operations, such
as

di ←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(b − u)1/2

i if wi < 0 and bi < +∞
1 if wi < 0 and bi = +∞

(u − a)1/2
i if wi ≥ 0 and ai > −∞

1 if wi ≥ 0 and ai = −∞

for i = 1...n. (8.4)

105

8.3.2 Current approaches to developing interfaces for vectors and vector operations

Currently there are three established approaches to abstracting vectors from ANA software that may be
used to address special and unusual vector operations. Below we describe each of these approaches and
discuss their limitations.

The first approach (I) is to allow an ANA to access the vector data in some controlled way which enables
the ANA to perform required operations. This is by far the most common approach and in the case of
parallel numerical codes using SPMD1, this is currently the preferred method [164, 16, 61]. This approach
however assumes that vector data is readily available in every process where the ANA runs. Otherwise,
moving large segments of vector data to processes where the ANA is running can cause considerable
inefficiencies. For instance, in the case of a client-server architecture, copies of vector data would have to
be communicated from the client to the server causing considerable inefficiencies. Approach I potentially
provides for an efficient development environment, provided data movement is not an issue and assuming
the ANA algorithms do not need to be re-used in other computing environments. Even in an SPMD
environment, this approach is not without difficulties (e.g. ghost elements and reduction operations).

More recently, a second approach (II) has been used where each specific ANA defines its own customized
abstract LAL interface and then leaves it up to the end user to provide the implementations [150, 87, 49].
ITL [150] uses the C++ template mechanism and requires compile-time polymorphism while OOQP [87]
and DiffPack [49] use C++ classes and virtual functions and allow for runtime polymorphism. While this
approach is more flexible than approach I and abstracts away the data mapping issues, it simply passes the
interfacing problem on to the end user, who is forced to implement the required operations given an
existing LAL. For example, OOQP includes more than 30 vector operations, many of which must be
implemented from scratch for a new LAL or computing configuration.

Finally, a third approach (III) constructs a general linear algebra interface that tries to anticipate what
fundamental or “primitive” operations will be needed. An ANA is expected to implement more specialized
operations by stringing together a set of primitives. In theory, this approach allows ANA and LAL software
to be developed and maintained independently and be used together with very little extra work. Such an
approach was taken by the designers of the Hilbert Class Library (HCL) version 1.0 [95] and was originally
motivated by out-of-core data sets but is applicable to any computing environment. Even though approach
III is more promising than approaches I and II, it still has three primary shortcomings. First, stringing
together a set of primitive operations requires temporary copies and can create an inefficient
implementation. Second, this approach requires the standardization of the primitive operations that are part
of the interface. Consequently, the developer of an ANA can not add a new operation to an existing LAL
interface and expect it to be automatically supported by LAL implementations. Third, nonstandard
operations are often difficult to develop through the use of a finite number of primitives.

To demonstrate how a series of primitive vector operations can be used to implement a more specialized
operation, consider the vector reduction operation (8.2). This operation could be performed with six
temporary vectors u, v,w, y, z ∈ IRn and the six primitive vector operations

−xi → ui, ui + β → vi, vi/di → wi, 0 → yi, max {wi, yi} → zi,

min {zi, i = 1...n} → α.
(8.5)

1Single Program Multiple Data (SPMD): A single program running in a distributed-memory environment on multiple parallel
processors

106

Many other vector operations can be performed using primitives. However, it is difficult to see how
operations like (8.1) and (8.4) could be implemented with general purpose primitive vector operations. A
large number of primitive operations need to be included in a generic vector interface in order to implement
most of the required vector operations. For example, the vector interface in HCL 1.0 contains more than 50
operations and still can not accommodate some of the above xsexample vector/array operations.

Another problem is that, in a parallel program, stringing primitives together can result in a serial
bottleneck. For instance, in ISIS++ [61], the combined reduction operation

{α, γ, ξ, ρ, ε} ← {(xT x)1/2, (vT v)1/2, (wT w)1/2, wT v, vT t} (8.6)

was implemented for the quasi-minimum-residual (QMR) iterative solver.

All five of the reduction operations in (8.6) can be performed in one pass through the vector data (four
vector reads) and one global reduction. In contrast, if one must rely on primitive LAL methods for
computing each reduction separately, one would need at least seven vector reads and five global reductions.
It is certainly possible to add an operation like (8.6) to a LAL, but such an ANA-specialized operation can
not be added to a generic LAL interface without the direct support of the developers of all the LALs used
with the ANA.

8.4 Vector Reduction/Transformation Operators

8.4.1 Introduction to vector reduction/transformation operations

Our design addresses all the above described limitations associated with approaches I, II, and III. The key
design strategy consists of passing user-defined operations to vector objects and having the vector
implementations apply the operations to the vector data. ANA developers are therefore not limited to the
use of primitives, can freely develop their vector operator implementations, and do not have to depend on
temporary copies. In addition to an efficient implementation, this approach is also independent of the
underlying data mapping of the vectors. The design allows ANA developers to create any vector
reduction/transformation operator (RTOp) that is equivalent to the following element-wise operators:

element-wise transformation : opT (i, v0
i . . . vp−1

i , z0
i . . . zq−1

i) → z0
i . . . zq−1

i , (8.7)

element-wise reduction : opR(i, v0
i . . . vp−1

i , z0
i . . . zq−1

i) → β, (8.8)

reduction of intermediates : opRR(β̂, β̃) → β̃, (8.9)

where v0 . . . vp−1 ∈ IRn are p non-mutable input vectors; z0 . . . zq−1 ∈ IRn are q mutable input/output

vectors; and β is a reduction target object which may be a simple scalar, a more complex non-scalar (e.g.

{α, γ, ξ, ρ, ε}) or NULL. In the most general case, the ANA can define an operator that will simultaneously

107

perform multiple reduction and transformation operations involving a set of vectors. Simpler operations

can be formed by setting p = 0, q = 0 or β = NULL. For example, reduction operations over one vector

argument, such as vector norms (||v||), are defined with p = 1, q = 0 and β = {scalar}. With this design,
all of the standard BLAS operations, the example vector operations in (8.1)–(8.6) and many more vector

operators can be expressed. The key to optimal performance is that the vector implementation applies (8.7)

and (8.8) together on an entire set of sub-vectors (for elements i = a . . . b) at once as

op(a, b, v0
a:b . . . vp−1

a:b , z0
a:b . . . zq−1

a:b , β) → z0
a:b . . . zq−1

a:b , β. (8.10)

In this way, as long as the size of the sub-vectors is sufficiently large, the cost of performing a function call
to invoke the operator will be insignificant compared to the cost of performing the computations within the
operator. In a parallel distributed vector, op(. . .) is applied to the local sub-vectors on each processor. The
only communication between processors is to reduce the intermediate reduction objects op(̂β, β̃) → β̃
(unless β = NULL, then no communication is required). It is important to understand that it is the vector
implementation that decides how to best segment the vector data into chunks that are passed to the
user-defined operator and this results in the most efficient implementation possible.

On most machines, the dominant cost of performing a vector operation is the movement of data to and
from main memory [71]. This is especially true for out-of-core vectors. Therefore, performing multiple
operations on a vector at the same time such as in (8.6) will be faster than performing them separately in
most computing environments.

It is important to note that the type of element-wise operators described in (8.7)–(8.9) can not be used to
implement general linear and nonlinear vector operators. For example, a general linear operator A

z = op(v) = Av

computes the ith element of the output vector z as a linear combination of perhaps all of the right-hand-side
vector elements in v. In a distributed-memory environment, this requires careful handling of vector data
which results in the use of ghost elements and the targeted communication of potentially large amounts of
vector data. For this reason, the element-wise operators defined in (8.7) explicitly state this element-wise
requirement. As is clearly seen in (8.7), the ith element in the input/output vectors z can only be computed
using information from the ith elements in the vectors v and z and from no other vector elements. It is
impossible to design an efficient operator interface that allows non-element-wise transformations that does
not also require a detailed knowledge of the computing environment, the layout of vector data and
functionality for communicating vector data.

8.4.2 An object-oriented design for reduction and transformation operators

Here an object-oriented [42, 86] design for vector reduction/transformation operators is presented which is
based on the “Visitor” pattern [86]. Figure 8.2 shows the general structure of the design. At the core of the
design is an interface for vector operators called RTOp for which different ANA-specific operator types can
be implemented. This operator interface includes methods for the operations (8.9) and (8.10). A vector
interface AbstractVector includes a method that accepts user-defined RTOp operator objects. A
vector implementation applies operators in an appropriate manner and returns reduction objects (if

108

AbstractVector

apply_op(op:RTOp, ... , reduct_obj:Reduct ionTarget, ...)

RTOpReductionTarget

AssignScalarOp

set_alpha(alpha)
apply_op(...)

DotProductOp

apply_op(...)
reduce_reduct_objs(...)

ANA

MaxStepOp

apply_op(..., reduct_obj:ReductionTarget)
reduce_reduct_objs(...)

OutOfCoreVector

apply_op(...)apply_op(...)apply_op(...)

MPIVectorSerialVector
set_beta(beta)
apply_op(...)
reduce_reduct_objs(...)

...
...

Applys

 Abstracts / encapsulates vectors Implements vector operations

Figure 8.2. UML class diagram : vector reduction/transformation op-
erators

non-NULL). Examples of a few different concrete vector subclasses are shown in Figure 8.2. The reason
that this design pattern is called “Visitor” is that an “ObjectStructure” takes a client’s user-defined visitor
object and then decides how this visitor object will visit all of the “Elements” containing the data. The key
is that the client’s user-defined operations are taken to the data in a transparent way, the data is not
presented to the client (as in the “Iterator” design pattern).

The mechanism by which a vector implementation applies a user-defined operator depends on the
computing environment. The following three scenarios show how an ANA code can be used with the same
operator implementations in three different computing configurations: (i) out-of-core, (ii) SPMD, and (iii)
client-server. The ANA code does not need to be recompiled for any scenario and the LAL
implementations can be changed at run time.

(i) For out-of-core data sets (Figure 8.3), the vector implementation reads the data from disk one chunk at a
time. The operator is called to transform the chunks and/or compute a reduction object. The transformed
chunks are then written back to disk and the computed reduction object is returned. The vector
implementation applies the operator in the same manner regardless of the operator’s implementation.

(ii) For a SPMD environment (Figure 8.4), the ANA runs in parallel in each process. Once the ANA in
each process gives the operator object to the vector object, the vector implementation in each process
applies the user-defined operator to only the local elements owned by the process. The intermediate
reduction objects in each process are then globally reduced (i.e. using a single call to
MPI Allreduce(...)) and the final reduction object is returned. If the operator has a NULL reduction
object, then no global reduction is performed and no communication is required.

(iii) In the client-server environment, the ANA runs only in the client process while the APP and LAL run
in separate processes on the server. In this scenario, the operator object must be transported from the client
to the server, where it is applied to the local vector data in each process. Then the reduction object is
returned to the ANA on the client. The client-server configuration demonstrates the fundamental difference
of this design from current approaches; the operator is taken to the data, the data is not moved to the
operator. The application of an operator in a client-server configuration is involved and the reader is
referred to [26] for additional details.

There are several advantages to the RTOp approach. Specifically:

109

a : ANA v : OutOfCoreVectorop : RTOp

´ createª

targ_sub_vec :=
read_sub_vec(0)

.

.

.

write_sub_vector
 targ_sub_vec)

Create and initialize the
transformation operator

Give the operator object to a
vector object to have the
operator applied

* Out-of-core vector
implementation reads first
sub-vector from file
* Operator object called to
perform reduct/trans operation
* Transformed sub-vector written
back to file

Rest of the sub-vectors are read
from file, transformed, and
written back to file
...

apply_op(...)
returns the reduction object (if
not null)

reduct_obj := apply_op(
 ...,targ_sub_vec,...
 ,reduct_obj)

apply_op(op,...reduct_obj)

 reduct_obj

Figure 8.3. UML interaction diagram : Applying a RTOp operator for
an out-of-core vector

(ith) MPI Process

d : MPIVector

op : RTOp

↑ ai2.3: reduct_obj:=
 MPI_Allreduce(
 i_reduct_obj
 ,reduct_obj ,mpi_op)

...(jth) MPI Process

d : MPIVector

op : RTOp

aj : ANA

↑ aj2.3: reduct_obj:=
 MPI_Allreduce(
 i_reduct_obj
 ,reduct_obj,mpi_op)

ai : ANA

↓ ai2.2: mpi_op := get_reduct_op()

↓ ai2.1: i_reduct_obj :=
 apply_op(...,local_sub_vec,...)

↓ aj2.2: mpi_op := get_reduct_op()

↓ aj2.1: i_reduct_obj :=
 apply_op(...,local_sub_vec,...)

↓ ai2: reduct_obj :=
 apply_reduction(
 op,...,reduct_obj)

↓ aj2: reduct_obj :=
 apply_reduction(
 op,...,reduct_obj)

↓ ai1: ´ createª ↓ aj1: ´ createª

Figure 8.4. UML collaboration diagram : Applying a RTOp operator
for a distributed parallel vector

110

1. LAL developers need only implement one operation — apply op(...)— and not a large
collection of primitive vector operations.

2. ANA developers can implement specialized vector operations without needing any support from
LAL maintainers. Note that common vector operators can be shared by the numerical community
and need not be implemented from scratch by each set of developers of an ANA code.

3. ANA developers can optimize time consuming vector operations on their own for the platforms they
work with.

4. Reduction/transformation operators are more efficient than using primitive operations and temporary
vectors (see Section 8.4.3).

5. ANA-appropriate vector interfaces that require built-in standard vector operations (i.e. axpy and
norms) can use RTOp operators for the default implementations of these operations. In this way,
some ANA developers may not ever need to work with RTOp operators directly in order to apply
standard vector operations given a well written vector interface. In other words, the RTOp approach
need not inconvenience ANA developers in any way.

8.4.3 Computational results for reduction/transformation operators

Conducting numerical experiments exclusively with low level linear algebra and some communication
from reduction operations is somewhat predictable. However, we verify our design with two basic
numerical experiments to validate an efficient implementation, and show better performance than any
primitive stringing process.

In the first example, a test program based on a mock QMR algorithm is used to investigate the impact of
using five primitive operations versus the all-at-once operator in (8.6). A total of 128 processors on CPlant
[182] was used in SPMD mode. The ratio of computation to communication was varied by manipulating
the number of local vector elements per process (local dim) and the number of axpys per reduction
(num axpys). When (local dim)(num axpys) is sufficiently large, computation dominates and there
is very little difference between the two implementations. However, when (local dim)(num axpys) is
smaller, the all-at-once operator (with a single global reduction verses 5 global reductions) was noticeably
more efficient. Figure 8.5 shows the ratio in runtimes for the two approaches. These results indicate that for
nontrivial problem sizes the savings in runtime can be significant.

In the second example, the impact of multiple access of the same vector data and the creation of
temporaries are investigated. The operation in (8.2) is used for the comparison for which the
implementation using primitives is shown in (8.5). Figure 8.6 shows the ratio of CPU times for the
all-at-once RTOp operator implementation versus separate primitive vector implementations. The C++
code is written using explicit loops and therefore removes any function call overhead that would otherwise
have a dramatic impact for small vectors. There are two variants of the string of primitive vector operations
implemented: one that uses preallocated temporary vectors (cached temporaries) and one that uses newly
allocated temporary vectors for every evaluation (dynamic temporaries). Vector data is allocated using
std::valarray<double> v(n) where n is the size of the vectors. Note that std::valarray<>
is not supposed to call constructors on the vector data upon construction so in principle the construction of
the vector object could be an O(1) operation (this is not true for std::vector<>). This is strictly a
serial program so there is no communication overhead to consider. The vector operators are performed
several times in a loop and the ratios of runtimes are computed. The test program was compiled using GCC

111

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

num_axpys

 (

 a
ll-

at
-o

nc
e

cp
u

)
ra

tio
 -

-

(5

 p
im

iti
ve

s
cp

u
)

local dim
50,000
5,000

500
50

Figure 8.5. Ratio of total process CPU times for using six primitive op-
erations versus the all-at-once operator for the operation in (8.6) (number

of processes = 128, number elements per process = 50, 500, 5000, 50000

and num axpys = 1 ... 400)

3.1 under Redhat Linux 7.2 and run on a 1.7 GHz Pentium IV processor. As shown in Figure 8.6, even
without the impact of multiple dynamic memory allocations, the implementation using the six primitive
vector operations only achieved about 35% of the speed of the all-at-once operator. When naive dynamic
allocations where used, the ratio of runtime dropped to about 20%. This example clearly shows the
deterioration in runtime performance that the vector primitives approach can have over the all-at-once
RTOp approach.

8.5 TSFCore

TSFCore is built on the foundation of vector reduction/transformation operators (RTOp). Here we present
the basic requirements for the TSFCore interfaces followed by a brief overview and then provide some
examples and expand on some more interesting details.

8.5.1 Basic requirements for TSFCore

Before describing the C++ interfaces for TSFCore, some basic requirements are stated.

1. TSFCore interfaces should be portable to all the ASC [177] platforms where SIERRA [76] and other
ASC applications might run. However, a platform where C++ templates are fundamentally broken
will not be a supported platform for TSFCore.

2. TSFCore interfaces should provide for stable and accurate numerical computations at a fundamental
level.

112

0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000 1000000

n (number of elements)

 re
la

tiv
e

sp
ee

d
6 primatives (cached temporaries)

6 primatives (dynamic temporaries)

all-at-once

Figure 8.6. Ratio of total process CPU times for using five primi-

tive reductions versus the all-at-once operator for the operation in (8.2)

and (8.5). The times for the primitive operation approaches with cached

temporary vectors and dynamically allocated temporary vectors are both

given.

3. TSFCore should provide a minimal, but complete, interface that addresses all the basic efficiency
needs (in both speed and storage) which will result in near-optimal implementations of all of the
linear algebra objects and all of the above mentioned ANA algorithms that use these objects.

4. ANAs developed with TSFCore should be able to transparently utilize different types of computing
environments such as SPMD, client/server2 and out-of-core3 implementations.

5. The work required to implement adapter subclasses (see the “Adapter” pattern in [86]) for and with
TSFCore should be minimal and straightforward for all of the existing related linear algebra and
ANA interfaces (e.g. the linear algebra interfaces in MOOCHO [23] and NOX [136]). This
requirement is facilitated by the fact that the TSFCore interfaces are minimal.

A hand-coded program (e.g. using Fortran 77 and MPI) should not provide any significant gains in
performance in any of the above categories in any computing environment. If a hand-coded algorithm in
Fortran 77 with MPI should not result in significant improvements in storage requirements, computational
speed, or numerical stability. There are many numerical algorithms can can not be considered to be
“abstract” and therefore TSFCore and like abstract interfaces should not be used for such algorithms.

8.5.2 Overview of TSFCore

The basic linear algebra abstractions that make up TSFCore are shown in Figure 8.7. The key abstractions
include vectors, vector spaces and linear operators. All of the interfaces are templated on the Scalar type
(the UML notation for templated classes is not used in the figure for the sake of improving readability).

2Client/Server: The ANA runs in a process on a client computer and the APP and LAL run in processors on a server
3Out-of-core: The data for the problem is stored on disk and is read from and written to back disk as needed

113

Vector space is the foundation for all other linear algebra abstractions. Vector spaces are abstracted through
the VectorSpace interface. A VectorSpace object acts primarily as an “Abstract Factory” [86] that
creates vector objects (which are the “products” in the “Abstract Factory” design pattern).

Vectors are abstracted through the Vector interface. The Vector interface is very minimal and really
only defines one nontrivial function applyOp(...). The applyOp(...) function accepts
user-defined (i.e. ANA-defined) reduction/transformation operator (RTOp) objects through the templated
RTOp C++ interface RTOpPack::RTOpT. A set of standard vector operations is provided as nonmember
functions using standard RTOp subclasses. The set of operations is also easily extensible. Every Vector
object provides access to its VectorSpace (that was used to create the Vector object) through the
function space() (shown in Figure 8.7 as the role name space on the association connecting the
Vector and VectorSpace classes).

The VectorSpace interface also provides the ability to create MultiVector objects through the
createMembers(numMembers) function. A MultiVector is a tall thin dense matrix where each
column in the matrix is a Vector object which is accessible through the col(...) function.
MultiVectors are needed for near-optimal processor cache performance (in serial and parallel
programs) and to minimize the number of global communications in a distributed parallel environment.
The MultiVector interface is useful in many different types ANAs as described later. The interface
class Vector is derived from MultiVector so that every Vector is a MultiVector. This
simplifies the development of ANAs in that any ANA that can handle MultiVector objects should
automatically be able to handle Vector objects as well.

VectorSpace also declares a virtual function called scalarProd(x,y)which computes the scalar
product < x, y > for the vector space. This function has a default implementation based on the dot product
xT y. Subclasses can override the scalarProd(x,y) function for other, more specialized,
application-specific definitions of the scalar product. There is also a MultiVector version
VectorSpace::scalarProds(...) (not shown in the figure). Finally, VectorSpace also
includes the ability to determine the compatibility of vectors from different vector spaces through the
function isCompatible(vecSpc).

Another important type of linear algebra abstraction is a linear operator which is represented by the
interface class LinearOp. The LinearOp interface is used to represent quantities such as a Jacobian
matrix. A LinearOp object defines a linear mapping from vectors in one vector space (called the
domain) to vectors in another vector space (called the range). Every LinearOp object provides access
to these vector spaces through the functions domain() and range() (shown as the role names domain
and range on the associations linking the OpBase and VectorSpace classes). The exact form of this
mapping, as implemented by the function apply(...), is

y = α op(M)x + βy (8.11)

where M is a LinearOp object; x and y are Vector objects; and α and β are Scalar objects. Note
that the linear operator in (8.11) is shown as op(M) where op(M) = M ,MT (transpose) orM∗ (adjoint)
(which is selected by the argument M trans). This implies that the non-transposed, the transposed, and
the adjoint linear mappings can be performed. However, support for transposed and adjoint operations by a
LinearOp object are only optional. If an operation is not supported then the function
opSupported(M trans) will return false. Note that when op(M) = MT or M∗, then x and y must
lie in the range and domain spaces respectively which is the opposite for the case where op(M) = M .

In addition to implementing linear mappings for single Vector objects, the LinearOp interface also

114

operation(inout arg_name : type) : type�

attribute_name : type�

Class1�

Class4�

Class5�

*�

role_name�0..1�

«create»�

association�

class�

operations�

multiplicity�

navigation�

dependency�
stereotype�

class name�

UML Notation�

attributes�

Class2�

generalization� self association�

Class3�

composition association�

createMember() : Vector
createMembers(in numMembers : int) : MultiVector
isCompatible(in vecSpc : VectorSpace) : bool
scalarProd(in x : Vector, in y : Vector) : Scalar

dim : int

TSFCore::VectorSpace

applyOp(in op : RTOpT, inout ...)

TSFCore::Vector

apply_op(inout ...)
reduce_reduct_objs(inout ...)

RTOpPack::RTOpT

applyOp(in op : RTOpT, inout ...)
subView(in col_rng : Range1D) : MultiVector
subView(in numCols : int, in cols[1..numCols] : int) : MultiVector

TSFCore::MultiVector

opSupported(in M_trans) : bool

TSFCore::OpBase

1

columns1..*

«create»

«create»

domain

space

apply(in M_trans, in x : Vector, out y : Vector, in ...)
apply(in M_trans, in X : MultiVector, out Y : MultiVector, in ...)

TSFCore::LinearOp

createVecSpc(in dim : int) : VectorSpace

TSFCore::VectorSpaceFactory

«create»

smallVecSpcFcty

range

Figure 8.7. UML class diagram : Major components of the TSF inter-
face to linear algebra

provides linear mappings of MultiVector objects through an overloaded function apply(...) which
performs

Y = α op(M)X + βY (8.12)

where X and Y are MultiVector objects. The MultiVector version of the apply(...) function
has a default implementation based on the Vector version. The Vector version apply(...) is a pure
virtual function and therefore must be overridden by subclasses.

The next section goes into some more detail behind the design philosophy for the core interfaces and the
use of these interfaces by both clients and subclass developers.

8.5.3 Some TSFCore details and examples

A basic overview of the interface classes shown in Figure 8.7 was provided in Section 8.5.2. In the
following sections, we go into more detail about the design of these interfaces and give examples of the use
of these classes. Note that in all the below code examples it is assumed that the code is in a source file
which include the appropriate header files. Although we could have provided an example for adjoint
sensitivities, these interfaces are not very interesting or complex. The majority of the linear algebra
interface will already exist in the forward simulation to handle direct or adjoint sensitivities, because the
forward solution mechanism are just being reused with different right hand sides. The more difficult
interfaces are associated with other objects as part of the optimization algorithm, such as an approximation
to the Hessian. In the next section we describe a compact rank-2 update procedure that is easily designed
using the TSFCore syntax.

115

H = B-1 = I +

S, Y Q ST, YT

Figure 8.8. A compact limited-memory representation of the inverse of
a BFGS matrix.

8.5.3.1 A motivating example sub-ANA : Compact limited-memory BFGS

To motivate the following discussion and to provide examples, we consider the issues involved in using
TSFCore to implement an ANA for the compact limited-memory BFGS (LBFGS) method described in
[46]. BFGS and other variable-metric quasi-Newton methods are used to approximate a Hessian matrix
B ∈ IRn×n of second derivatives. This approximation is then used to generate search directions for various
types of optimization algorithms. The Hessian matrix B and/or its inverse H = B−1 is approximated using
only changes in the gradient y = ∇f(xk+1) − ∇f(xk) ∈ IRn of some multi-variable scalar function f(x)
for changes in the variables s = xk+1 − xk ∈ IRn. A set of matrix approximations Bk are formed using
rank-2 updates where each update takes the form

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

. (8.13)

In a limited-memory BFGS method, only a fixed maximum numbermmax of updates

S =
[

s1 s2 . . . sm

]
∈ IRn×m (8.14)

Y =
[

y1 y2 . . . ym

]
∈ IRn×m (8.15)

are stored wherem ≤ mmax is the current number of stored updates; and S and Y are multi-vectors (note
that the subscripts in (8.14)–(8.15) correspond to column indexes in the multi-vector objects, not iteration
counters k). When an optimization algorithm begins, m = 0. Each iteration m is incremented until
m = mmax, after which the method starts dropping older update pairs (s, y) to make room for newer ones.
In a compact LBFGS method, the inverse H (shown in Figure 8.8) of the quasi-Newton matrix B (where
when the index k is dropped, it implicitly refers to the current iteration Bk) is approximated using the tall
thin multi-vectors S and Y along with a small (serial) coordinating matrix Q (which is computed from S
and Y and updated each iteration). The scalar γ is chosen for scaling reasons and H0 = B−1

0 = γI
represents the initial matrix approximation from which the updates are performed. A similar compact
formula also exists for B which involves the same matrices (and requires solves with Q). In an SPMD

116

configuration, the multi-vectors S and Y may contain vector elements spread over many processors.
However, the number of columns m in S and Y is usually less than 40. Because of the small number of
columns in S and Y , all of the linear algebra performed with the matrix Q is performed serially using
dense methods (i.e. BLAS and LAPACK). A parallel version of the compact LBFGS method is
implemented, for example, as an option in MOOCHO [???]. TSFCore supports efficient versions of all of
the operations needed for a near-optimal parallel implementation of this LBFGS method.

The MultiVector class provides the critical functionality needed for the efficient implementation of the
compact LBFGS sub-ANA and therefore MultiVectors are the focus in the next section.

8.5.3.2 MultiVector

While the concepts of a VectorSpace and Vector are well established, the concept of a multi-vector is
fairly new. The idea of a multi-vector was motivated by the library Epetra [113] which contains mostly
concrete implementations of distributed-memory linear algebra classes using MPI [166]. A key issue is
how multi-vectors and vectors relate to each other. In Epetra, the vector class is a specialization of the
multi-vector class and each multi-vector object can be seen as a collection of vector objects. This is the
approach that TSFCore takes as well.

Note that a multi-vector is not the same thing as a blocked or product vector. In fact, multi-vectors and
product vectors are orthogonal concepts and it is possible to have product multi-vectors.

All of the below examples will involve the compact LBFGS implementation described above in Section
8.5.3.1. For these examples we will consider interactions with the two principle MultiVector objects
Y store and S store which each havemmax columns.

The following example function copies the most recent update vectors s and y into the multi-vectors
S store and Y store and increments the counter m for a compact LBFGS implementation.

template<class Scalar>
void TSFCore::update_S_Y(const Vector<Scalar>& s, const Vector<Scalar>& y

,MultiVector<Scalar>* S_store, MultiVector<Scalar>* Y_store, int* m)
{

const int m_max = S_store->domain()->dim(); // Get the maximum number of updates allowed
if(*m < m_max) {
++(*m); // Increment the number of updates
assign(S_store->col(*m).get(),s); // Copy in s into S(:,m)
assign(Y_store->col(*m).get(),y); // Copy in y into Y(:,m)

}
else {
// We must drop the oldest pair (s,y) and copy in the newest pair
...

}
}

The most important issues to discuss with regard to MultiVector relate to where it fits in the class
hierarchy. The decision adopted for TSFCore was to make MultiVector specialize LinearOp. In
other words, a MultiVector object can also act as a LinearOp object. Therefore, a MultiVector
can apply itself to Vector or other MultiVector objects.

As an example where this is needed, consider using the LBFGS inverse matrix H shown in Figure 8.8 as a

117

linear operator which acts on multi-vector arguments U ∈ IRn×p and V ∈ IRn×p in an operation of the form

U = αB−1V

= αHV

= αgV + α
[

S γY
][Qss Qsy

QT
sy Qyy

][
ST

γY T

]
V

where the matrices Qss, Qys and Qyy are stored as small MultiVector objects. A multi-vector solve
using the inverse H = B−1 might be used, for instance, in an active-set optimization algorithm where
V ∈ IRn×p represents the p gradient vectors of the active constraints. This is an important operation, for
instance, in the formation of a Schur complement of the KKT system in the QP subproblem of an
reduced-space SQP method [22]. This multi-vector operation using H can be performed with the following
atomic operations

T1 = ST V

T2 = Y T V

T3 = QssT1 + γQsyT2

T4 = QT
syT1 + γQyyT2

U = αγV + αST3 + αγY T4

where T1, T2, T3 and T4 are all temporary MultiVector objects of dimension m × p. The following
function shows how the above operations are performed in order to implement the overall multi-vector
operation.

template<class Scalar>
void TSFCore::LBFGS_solve(

int m, Scalar g, const MultiVector<Scalar>& S_store, const MultiVector<Scalar>& Y_store
,const MultiVector<Scalar>& Q_ss, const MultiVector<Scalar>& Q_sy, const MultiVector<Scalar>& Q_yy
,const MultiVector<Scalar>& V, MultiVector<Scalar>* U, Scalar alpha = 1.0, Scalar = beta = 0.0
)

{
// validate input
...
const int p = V.domain()->dim(); // Get number of columns in V and U
Teuchos::RefCountPtr<const MultiVector<Scalar> >
S = get_updated(S_store,m), // Get view of only stored columns in S_store
Y = get_updated(Y_store,m); // Get view of only stored columns in Y_store

Teuchos::RefCountPtr<MultiVector<Scalar> >
T_1 = S->domain()->createMembers(p), // Create the tempoarary multi-vectors
T_2 = Y->domain()->createMembers(p), // ...
T_3 = S->domain()->createMembers(p), // ...
T_4 = Y->domain()->createMembers(p); // ...

S->apply(TRANS,V,T_1->get()); // T_1 = S’*V
Y->apply(TRANS,V,T_2->get()); // T_2 = Y’*V
Q_ss.apply(NOTRANS,*T_1,T_3->get()); // T_3 = Q_ss*T_1
Q_sy.apply(NOTRANS,*T_2,T_3->get(),gamma,1.0); // T_3 += gamma*Q_sy*T_2
Q_sy.apply(TRANS, *T_1,T_4->get()); // T_4 = Q_sy’*T_1
Q_yy.apply(NOTRANS,*T_2,T_4->get(),gamma,1.0); // T_4 += gamma*Q_yy*T_2
S->apply(NOTRANS,*T_3,U,alpha); // U = alpha*S*T_3
Y->apply(NOTRANS,*T_4,U,alpha*gamma,1.0); // U += alpha*gamma*Y*T_4
axpy(alpha*g,V,U); // U += alpha*g*V

}

118

Y_store S Y

m_max m m p

P0

P1

P2

P3

p

V US_store

m_max

n

a) Disturbed-memory multi-vectors

P0

P1

P2

P3

Q_ss

Q_ss

Q_ss

Q_ss

Q_yy

Q_yy

Q_yy

Q_yy

T_1

T_1

T_1

T_1

T_2

T_2

T_2

T_2

T_3

T_3

T_3

T_3

T_4

T_4

T_4

T_1

Q_sy

Q_sy

Q_sy

Q_yy

m m m p p p p

m

m

m

m

b) Locally replicated multi-vectors

Figure 8.9. Carton of disturbed and locally replicated multi-vectors

which are used in the example compact LBFGS sub-ANA when run in

SPMD mode on four processors. The process boundaries are shown as

dotted lines. The numbers for rows and columns of each multi-vector are

also shown.

Consider the use of the above function in an SPMD environment where the ANA runs in duplicate and in
parallel on each processor. Here, the elements for the multi-vector objects S store (and view S) ,
Y store (and view Y), V and U are distributed across many different processors as Figure 8.9 shows. The
case shown4 in Figure 8.9 is for the situation where p < m. In SPMD mode, all of the elements in the
multi-vector objects Q ss, Q sy, Q yy, T 1, T 2, T 3 and T 4 are stored locally and in duplicate (i.e.
locally replicated) on each processor as shown5 in Figure 8.9.b. Now let us consider the performance of
this set of operations in this context. Note that there are principally three different types of operations with
multi-vectors that are performed through the MultiVector::apply(...) function.

The first type of operation performed by MultiVector::apply(...) is the parallel/parallel
matrix-matrix products performed in the lines

4The aspect ratio of the number of rows to number of columns in Figure 8.9 is exaggerated in that in a realistic case the number
of rows usually numbers in the tens to hundreds of thousands while the number of columns usually number in only the tens. This
was done for illustrative purposes. If the true aspect ratio where shown in Figure 8.9 then all of these multi-vectors would appear
to be just vertical lines and would not show a distinction between different multi-vectors.

5The same unrealistic aspect ratio shown in Figure 8.9 is the same as shown in Figure 8.9.a, again for illustrative purposes.

119

S Transposed

P0

P1

P2

P3

V

P3P2P1P0

P0

P1

P2

P3

T_1

T_1

T_1

T_1

=

Figure 8.10. Carton of distributed-memory matrix-matrix product (i.e.
block dot product) T1 = ST V run in SPMD mode on four processors.

This operation first performs local matrix-matrix multiplication with the

entries of ST and V on each processor using level-3 BLAS and then a

global reduction summation operation is performed (using MPI) to pro-

duce T1 which is returned to all of the processors.

S->apply(TRANS,V,T_1->get());
Y->apply(TRANS,V,T_2->get());

where the results are stored in the local multi-vectors T 1 and T 2. The operation T1 = ST V is shown in
Figure 8.10 for the SPMD mode on four processors. This type of operation is also known as a block dot
products. These two operations only require a single global reduction for each, independent of the number
of updates m represented in S and Y or columns p in V . Note that if there was no concept of a multi-vector
and these matrix-matrix products had to be performed one set of vectors at a time, then these two parallel
matrix-matrix products would require a staggering 2mp global reductions. Form = 40 and p = 20 this
would result in 2mp = 2(40)(20) = 1600 global reductions! Clearly this many global reductions would
destroy the parallel scalability of the overall ANA any many cases. It is in this type of operation that the
concept of a MultiVector is most critical for near-optimal performance in parallel programs. In
addition to minimizing communication overhead, the MultiVector implementation can utilize level-3
BLAS to perform the local processor matrix-matrix multiplications yielding near-optimal cache
performance on most systems.

The second type of operation performed by MultiVector::apply(...) is the local/local
matrix-matrix products of small local MultiVector objects in the lines

Q_ss.apply(NOTRANS,*T_1,T_3->get());
Q_sy.apply(NOTRANS,*T_2,T_3->get(),g,1.0);
Q_sy.apply(TRANS, *T_1,T_4->get());
Q_yy.apply(NOTRANS,*T_2,T_4->get(),g,1.0);

where the operation T3 = QssT1 is shown, for example, in Figure 8.11. Note that these types of local
computations classify as serial overhead and therefore it is critical that the cost of these operations be kept
to a minimum or they could cripple the parallel scalability of the overall ANA. Each of these four

120

P0

P1

P2

P3

Q_ss

Q_ss

Q_ss

Q_ss

T_1

T_1

T_1

T_1

T_3

T_3

T_3

T_3

=

=

=

=

Figure 8.11. Carton of local matrix-matrix productT3 = QssT1 involv-

ing locally replicated multi-vectors run in SPMD mode on four proces-

sors. In SPMD mode this operation involves no processor-to-processor

communication at all.

matrix-matrix multiplications involve only one virtual function call and the matrix-matrix multiplication
itself can be performed with level-3 BLAS, achieving the fastest possible flop rate attainable on most
processors [71].

The third type of operation performed by MultiVector::apply(...) is local/parallel matrix-matrix
multiplications performed in the lines

S->apply(NOTRANS,*T_3,U,alpha);
Y->apply(NOTRANS,*T_4,U,alpha*g,1.0);

where the operation U = ST3 is shown, for example, in Figure 8.12. This type of operation involves fully
scalable work with no communication or synchronization required. Here, a vector-by-vector
implementation will not be a bottleneck from a standpoint of global communication. However, this
operation will utilize level-3 BLAS and yield near-optimal local cache performance where a
vector-by-vector implementation would not.

The last type of operation performed in the above LBFGS solve(...) function does not involve
MultiVector::apply(...) and is shown in the line

axpy(alpha*g,V,U);

The implementation of this function uses an RTOp transformation operator with the
MultiVector::applyOp(...) function. Note that this function only involves transformation
operations (i.e. no communication) which are fully scalable.

8.6 Conclusions

TSFCore provides the intersection of all of the functionality required by a variety of abstract numerical
algorithms ranging from iterative linear solvers all the way up to optimizers. The foundation of TSFCore

121

P0

P1

P2

P3

S

P0

P1

P2

P3

=

U

T_3

T_3

T_3

T_3

Figure 8.12. Carton of distributed-local matrix-matrix product U =
ST3 involving both distributed and locally multi-vectors run in SPMD

mode on four processors. To perform this operation, the local elements

in the distributed multi-vectorS are multiplied with the locally replicated

multi-vector T3 and the result of the matrix-matrix product are set to the

local elements of the distributed multi-vector U . In SPMD mode this

operation requires no processor-to-processor communication at all.

described here only covers vector spaces, vectors, multi-vectors and linear operators. While this is
sufficient for most linear ANA algorithms (i.e. linear equation solvers and eigen solvers) it is not sufficient
for higher-level nonlinear algorithms. An extension of the basic TSFCore interfaces for nonlinear problems
is described in [24].

By adopting TSFCore as a standard interface layer, interoperability between applications, linear algebra
libraries and abstract numerical algorithms in advanced scientific computing environments becomes
automatic to a large extent.

Growing complexities associated with computational environments, application domains, and data
mapping place difficult demands on the development of numerical algorithms. The vector operator
interface proposed here addresses these issues and allows the development of many types of complex
abstract numerical algorithms that are highly flexible and reusable.

Advanced object-oriented design patterns were used to develop the RTOp interface and somewhat
predictable numerical experiments demonstrate high efficiency in comparison to using a combination of
primitives. Also, simple scalability tests confirm minimal serial overhead for large number of processors.
Though the numerical efficiencies are noteworthy, development efficiencies and functionality provide the
main advantages of this approach.

In summary, there are the five primary advantages to this approach:

1. LAL developers need only implement one operation — apply op(...)— and not a large
collection of primitive vector operations.

2. ANA developers can implement specialized vector operations without needing any support from
LAL maintainers.

122

3. ANA developers can optimize time consuming vector operations on their own for the platforms they
work with.

4. Reduction/transformation operators are more efficient than using primitive operations and temporary
vectors (see Section 8.4.3).

5. ANA-appropriate vector interfaces that require built-in standard vector operations (i.e. axpy and
norms) can use RTOp operators for the default implementations of these operations.

A large set of vector operators are already available, but more significant is the flexibility to extend
functionality. In addition, the extensions are independent of computer architecture and data mapping. By
allowing the user to define reduction/transformation operators, all of the vector operations previously
mentioned and many more can be implemented efficiently without requiring any temporary vectors.

The success of this approach relies on the adoption of a relatively small interface for
reduction/transformation operators that is contained in RTOp.h. Future work will include the use of the
RTOp approach in a client-server environment, which will specifically address development issues and
bottlenecks related to distributed computing, heterogeneous networks and grid computing.

This design for vector reduction and transformation operators has been used to design very powerful
ANA-LAL and ANA-APP (for nonlinear programming) interfaces in C++ called
AbstractLinAlgPack and NLPInterfacePack respectively. These interfaces in turn have been
used to upgrade a successive quadratic programming optimization package MOOCHO (a.k.a. rSQP++
[26]) to allow fully transparent parallel linear algebra and arbitrary implementations of linear solvers
(direct and iterative).

123

Chapter 9

Instrusive Optimization of a PDE Device
Model using Partial Nonlinear Elimination
Newton Based Solver

9.1 Introduction

A mathematical formulation for mixed-level simulation algorithms has been developed where different
physics interact at potentially different spatial resolutions in a single domain. Some examples can be found
in electrical simulation in which PDE-based device modeling provides input into a circuit
simulation [123, 124] and device simulation [69] and also in aeroelasticity where Euler equations interact
with structural dynamics. Most commonly, solution mechanisms consist of explicit methods where a very
uncoupled procedure is used to converge to a final solution. From an implementation standpoint, explicit
methods are by far the most efficient. However, these methods are computationally very inefficient in
addition to being limiting from an analysis standpoint. If a mixed-level simulation requires sensitivities of
all states with respect to certain design parameters, an explicit solution mechanism precludes such an
analysis. SAND optimization formulations, however, offer a possible option for not only implicitly
formulating the solution of the forward problem, but also for providing the necessary derivative
components for analysis capabilities, such as sensitivity analysis and optimization.

We investigate the use of a partial nonlinear elimination solver technique to solve these mixed-level
problems. In addition, we show how these formulations are closely coupled to SAND optimization
approaches and sensitivity analysis. The next section discusses, in some detail, the mathematical
formulation, followed by a section that discusses a potential application in the electrical simulation area.
The implementation of these techniques are future work and, consequently, this chapter is for mathematical
exposition purposes only.

124

9.2 Partial Nonlinear Elmination in a Newton-based Nonlinear Equation
Solver

Here we consider specialized solution techniques for sets of nonlinear equations where the two sets of

equations are treated differently from a globalization perspective. The full set of square nonlinear equations

takes the form

c(y) = 0, (9.1)

where

y ∈ IRny is the vector of state variables, and

c(y) : IRny → IRny is the state constraint vector function.

Now let assume that y and c(y) can be partitioned as yT =
[

yT
1 yT

2
]
and

c1(y1, y2) = 0, (9.2)

c2(y1, y2) = 0, (9.3)

where

y1 ∈ IRny,1 ,

y2 ∈ IRny,2 ,

c1(y1, y2) : IRny → IRny,1,

c2(y1, y2) : IRny → IRny,2,

and (9.2) defines an implicit function for y1 as

c1(y1, y2) = 0 =⇒ y1 = y̆1(y2). (9.4)

The implicit function y1 = y̆1(y2) defined in (9.4) is implemented using a nonlinear equation solver. This
type of implementation can be found in a variety of nonlinear solvers such as NOX [136] and MOOCHO
[23]. The sensitivity of y1 with respect to y2 in (9.4) is given by the direct sensitivity matrix (see [206,
Chater 2])

∂y1

∂y2
= −∂c1

∂y1

−1 ∂c1

∂y2
(9.5)

which assumes that the Jacobian matrix ∂c1
∂y1

is nonsingular at solutions of (9.2) and is therefore a sufficient
condition for the Implicit Function Theorem. It then follows that the implicit function in (9.4) exists and is
well defined in the neighborhood of an initial guess.

Using (9.4) we obtain the reduced set of equations

c2(y̆1(y2), y2) = 0 =⇒ c̆(y̆), (9.6)

where y̆ = y2 is introduced for notational convenience.

125

9.2.1 Two-level Newton methods

Here we consider a straightforward method for the solution of the reduced set of equations in (9.6) using
Newton’s method which, at iterate y̆k, has linear subproblems of the form

∂c̆

∂y̆
δy̆ = −c̆(y̆k) (9.7)

with the Jacobian ∂c̆
∂y̆ (evaluated at y̆k) given as

∂c̆

∂y̆
=

∂c2

∂y2
+

∂c2

∂y2

∂y1

∂y2
=

∂c2

∂y2
− ∂c2

∂y1

∂c1

∂y1

−1 ∂c1

∂y2
(9.8)

which is a result of (9.5) and (9.6). This straightforward application of Newton’s method to the reduced set
of equations is known as a two-level Newton method [133, 159, 160]. The drawback of this method is clear

from (9.8) due to the presence of the inverse ∂c2
∂y2

−1
; the problems with the strightforward implementations

of the two-level Newton method are discussed below. There are two approaches to the solution of the linear
system in (9.7). The first is to solve the outer Newton system iteratively which requires matrix-vector
products of the form

∂c̆

∂y̆
v =

∂c2

∂y2
v − ∂c2

∂y1

∂c1

∂y1

−1(∂c1

∂y2
v

)
(9.9)

which requires a full (exact) linear solve with ∂c1
∂y1

for each matrix-vector product. If linear systems with
∂c1
∂y1

are also solved using an iterative solver, then this approach will be prohibitively expensive. For

example, if each linear solve with ∂c1
∂y1

requires 100 inner iterations on average and the outer linear solver

for ∂c̆
∂y̆ requires 100 iterations on average, then a total of 100 × 100 = 10, 000 inner linear solver iterations

for solves with ∂c1
∂y1

would be required to solve for just a single Newton step δy̆. Also, due to the form of
∂c̆
∂y̆ , it is difficult to form a preconditioner for this system which may otherwise be able to reduce the
number of outer linear solver iterations.

The second strightforward approach to solve (9.7) is to explicitly form the matrix ∂y1
∂y2

= − ∂c1
∂y1

−1 ∂c1
∂y2

up

front which requires, in the worst case, ny,2 full linear solves with
∂c1
∂y1
. In problems with special structure

(i.e. the PDE-device circuit problem), the number of required linear solves can be much less. If an iterative
solver is used for ∂c1

∂y1
, each of these ny,2 linear solves may require tens or hundreds of linear solver

iterations. Therefore, the formation of the direct sensitivity matrix ∂y1
∂y2

may require hundreds or thousands

of inner linear solve iterations. Once the matrix ∂y1
∂y2

is formed, the outer Newton system (9.7) can be solved
using a direct or iterative method.

Once a Newton step δy̆ has been computed from (9.7), some globalization needs to be used such as a
standard line-search or trust-region globalization method. For example, consider a Armijo-based line
search method [174] which requires that

φ(y̆k + αδy̆) ≤ φ(y̆k) + αη
d(φ(y̆k + αδy̆))

d(α)

∣∣∣∣
α=0

(9.10)

where η is a small constant less than one (usually η = 1 × 10−4), α is the step length along the Newton
direction and φ(y̆) is some norm on c̆(y̆). One particual choice for φ(y̆) is

φ(y̆) = 1/2||c̆(y̆)||22. (9.11)

126

If the reduced Newton system in (9.7) is solved exactly, then it is easy to show that

d(φ(y̆k + αδy̆))
d(α)

∣∣∣∣
α=0

= −||c̆(y̆)||22. (9.12)

Note that the evaluation of c̆(y̆) = c2(y̆1(y2), y2) in (9.11) requires a complete nonlinear solve with
c1(y1, y2) = 0 in (9.4). In a standard backtracking linear search procedure, an initial step length of α = 1 is
usually tried first since this is the optimal step length near the solution. Then α is reduced until a condition
such as in (9.10) is statisfied and the step is accepted. However, this stategy generally does not work well
when using a two-level Newton method because c̆(y̆) is not just a simple residual evaluation but involves
an inner nonlinear solve to evaluate the implicit function y1 = y̆1(y2) which may not converge if α is too
large and a good starting guess for y1 is not available. Therefore, in these cases, it is usually better to start
out with α = αsmall and then increase α a little at a time which insures that the inner solve will converge
since good starting guesses are available.

The main advantage of the above two-level Newton method is that it may be far more robust than a
straightforward full Newton method applied to (9.1) which uses standard globalization techniques.

9.2.2 Full Newton step computation with two-level Newton globalization

In this section we show how a full Newton method for the solution of (9.1) can be modified in order to
apply the same type of globalization used in the two-level Newton method described in Section 9.2.1. The
resulting method is mathematically equivalent to the strightforward two-level Newton method but can be
significantly less expensive in many cases.

Consider a full Newton method for the solution of (9.1) which at the current iterate yk = (y1,k, y2,k) has
the linear Newton system [

∂c1
∂y1

∂c1
∂y2

∂c2
∂y1

∂c2
∂y2

]
︸ ︷︷ ︸

∂c

∂y

[
δy1
δy2

]
︸ ︷︷ ︸

δy

= −
[

c1(y1,k, y2,k)
c2(y1,k, y2,k)

]
︸ ︷︷ ︸

c(yk)

(9.13)

If at the current iterate c1(y1,k, y2,k) = 0, then the following theorem says that the solution δy2 to the full
Newton system (9.13) is exactly the same as the solution δy̆ to the reduced Newton system (9.7).

Theorem 1. Equavalence of full and reduced Newton steps

If the Jacobian matrices ∂c1
∂y1

in (9.8) and ∂c
∂y in (9.13) are nonsingular and c1(y1,k, y2,k) = 0, then the

solution δy2 from (9.13) is equal to the solution δy̆ from (9.8).

Proof

From (9.7) and (9.8) we have

∂c̆

∂y̆
δy̆ + c̆ =

∂c2

∂y2
δy̆ − ∂c2

∂y1

∂c1

∂y1

−1 ∂c1

∂y2
δy̆ + c̆ = 0 (9.14)

127

where c̆ = c̆(y̆k). By substituting ∂c1
∂y2

δy̆ and ∂c2
∂y2

δy̆ (with δy2 = δy̆) from (9.13) into the above equation we
have

(
−∂c2

∂y1
δy1 − c2

)
− ∂c2

∂y1

∂c1

∂y1

−1
⎛⎝−∂c1

∂y1
δy1 − c1︸︷︷︸

0

⎞⎠+ c2

= −∂c2

∂y1
δy1 − c2 +

∂c2

∂y1
δy1 + c2

= 0 �

The implication of the above theorem is that one has a choice in how one computes the Newton step for the
outer Newton iteration in (9.7) for the two-level Newton method. In many cases, the computational effort
to solve the full Newton system in (9.13) will be far less than for the solution of reduced Newton system in
(9.7). In other cases, it may be more computationaly effective to solve the reduced Newton system as
described above. It is interesting to note that the reduced Jacabian matrix ∂c̆

∂y̆ in (9.7) is actually the Schur

complement of ∂c1
∂y1

in ∂c
∂y . This means that a linear solve with

∂c̆
∂y̆ followed by a linear solve with

∂c1
∂y1

can be

used to solve any linear system with ∂c
∂y . For example, general linear systems of the form[

∂c1
∂y1

∂c1
∂y2

∂c2
∂y1

∂c2
∂y2

][
x1
x2

]
=
[

b1
b2

]
(9.15)

can be solved as

x2 =
∂c̆

∂y̆

−1(
b2 − ∂c2

∂y1

∂c1

∂y1

−1
b1

)
(9.16)

x1 =
∂c1

∂y1

−1(
b1 − ∂c1

∂y2
x2

)
. (9.17)

It is easy to verify the above Schur complement equations. Note that if transposed solves are supported for
∂c̆
∂y̆ and

∂c1
∂y1

then this Schur complement method can also be used to solve for transposed systems with ∂c
∂y

which is very useful for SAND optimization algorithms [206]. For example, general linear systems
involving the transpose of the form [

∂c1
∂y1

T ∂c2
∂y1

T

∂c1
∂y2

T ∂c2
∂y2

T

][
x1
x2

]
=
[

b1
b2

]
(9.18)

can be solved as

x2 =
∂c̆

∂y̆

−T (
b2 − ∂c1

∂y2

T ∂c1

∂y1

−T

b1

)
(9.19)

x1 =
∂c1

∂y1

−T (
b1 − ∂c2

∂y1

T

x2

)
. (9.20)

The identification of ∂c̆
∂y̆ as a Schur complement of

∂c
∂y means that the linear algebra computations used in

the two-level Newton method described in Section 9.2.1 can be used to implement other types of algorithms
including direct and perhaps adjoint (if transposed solves are supported) SAND optimization methods.

Once the full Newton system in (9.13) is solved, the exact same type of line-search or trust-region
globalization that is applied in the two-level Newton method can be applied here also. Note that step δy1
computed from (9.13) need not be discarded but instead should be used as part of an initial guess for the
solution of the inner implicit solve c1(y1, y2) = 0 with the initial guess y1,k+1 = y1,k + αδy1.

128

9.3 Electrical Simulation Example

Analog circuit simulation has been used extensively in the electronic design community and is based upon
describing an electrical circuit as a system of network-coupled differential algebraic equations (DAE’s).
Device simulation is a higher fidelity simulation, which describes a single semiconductor device with a set
of coupled partial differential equations (PDE’s), discretized on a spatial mesh. These different types of
simulations generally present different solver (time integration, nonlinear and linear) requirements, so
coupling them together is potentially problematic. A two-level Newton algorithm address these issues by
isolating the circuit and PDE device phases of the calculation. A standard single-level Newton method is
also utilized and tested against the two-level Newton method.

Coupling algorithms between PDE device simulation and analog circuit simulation have been studied over
the past 20 years [75, 165, 184, 161, 214]. Most of these studies employed a full-Newton approach, which
is still the most commonly applied method for commercial simulators.

In the early 1990’s, a new approach to mixed-level simulation was published by Mayaram [159, 160].
Mayaram proposed the two-level Newton algorithm, and successfully applied it to mixed-level simulation.
Later, Rotella [185] also used the two-level approach, building on the work of Mayaram. Unlike earlier
work, which was applied to just DC operating point (steady state) and transient calculations, both Mayaram
and Rotella also applied their approach to small-signal AC analysis. Both Mayaram and Rotella reported
that the two-level Newton algorithm was much more robust than the full-Newton for mixed-level
simulation, although it tended to be slower.

9.4 Problem Definition

This section defines the general circuit problem, as well as the general device problem, in terms of the set
of equations to be solved. First is a brief description of the circuit problem, then a detailed description of
the device problem. Finally coupling equations for mixed-level simulation are presented.

Methods of analog circuit simulation (e.g., SPICE [178]) are well described by Vlach and Singal [212],
among others [11, 59, 220]. The circuit to be simulated is represented as a system of coupled DAE’s, which
are obtained from Kirchoff’s current and voltage laws (KCL and KVL, respectively). In general, there are
several mathematical formulations that may be used but in practice, nearly all circuit simulators use the
“modified KCL” formulation [188]. This is the formulation used by Xyce, and has been described in detail
in the Xyce math document [134].

9.4.1 Device Simulation

Methods of device simulation are described by many references including Kramer [139] and
Selberherr [195]. As with circuit simulation, there are several different approaches that may be used.
However, the most common one, and the one that is used for this work, is the drift-diffusion (DD)
formulation. This formulation consists of three coupled PDE’s: a single Poisson equation for electrostatic
potential and two continuity equations; one each for electrons and holes.

129

9.4.1.1 Poisson equation

The electrostatic potential φ satisfies Poisson’s equation

−∇ · (ε∇φ(x)) = ρ(x), (9.21)

where ρ is the charge density and ε is the permittivity of the material. For semiconductor devices, the
charge density is determined by the local carrier densities and the local doping,

ρ(x) = q(p(x) − n(x) + C(x)) (9.22)

Here p(x) is the spatially-dependent concentration of holes, n(x) the concentration of electrons, and q the
magnitude of the charge on an electron. C(x) is the total doping concentration, which can also be
represented as C(x) = N+

D (x) − N−
A (x), where N+

D the concentration of positively ionized donors, N−
A

the concentration of negatively ionized acceptors.

9.4.1.2 Species continuity equations

The continuity equations relate the convective derivative of the species concentrations to the creation and
destruction of particles (“recombination/generation”).

∂n(x)
∂t

+ ∇ · Γn = −R(x) (9.23)

∂p(x)
∂t

+ ∇ · Γp = −R(x) (9.24)

Here n is the electron concentration and p is the hole concentration. R is the recombination rate for both
species. Γn and Γp are particle fluxes for electrons and holes, respectively. The sign of R is chosen because
R is usually expressed as a recombination rate, and is positive if particles are annihilating. The right hand
sides are equal since creation and destruction of carriers occurs in pairs.

One way in which the drift-diffusion model differs from other common formulations is the manner in
which the quantities Γn and Γp are determined. The expressions used are

Γn = n(x)µnE(x) + Dn∇n(x), (9.25)

Γp = p(x)µpE(x) + Dp∇p(x). (9.26)

Here µn, µp are mobilities for electrons and holes, and Dn, Dp are diffusion constants. E(x) is the electric
field, which is given by the gradient of the potential, or −∂φ/∂x.

130

9.4.1.3 Initial Condition

Equilibrium Approximation
Even when the SG method is employed, PDE semiconductor simulations will often fail to converge if not
given a good initial guess. A simple initial guess, based on the equilibrium electron and hole
concentrations can be calculated using information about the doping profile.

if C(x) >= 0 n(x) =
1
2

(√
C(x)2 + 4Ni2 + |C(x)|

)
(9.27)

if C(x) < 0 n(x) =
2Ni2(√

C(x)2 + 4Ni2 + |C(x)|
) (9.28)

(9.29)

if C(x) <= 0 p(x) =
1
2

(√
C(x)2 + 4Ni2 + |C(x)|

)
(9.30)

if C(x) > 0 p(x) =
2Ni2(√

C(x)2 + 4Ni2 + |C(x)|
) (9.31)

(9.32)

where C(x) is the spatially dependent doping concentration, and Ni is the intrinsic carrier concentration.
Once the electron and hole concentrations have been calculated, the equilibrium potential can be
approximated by

φ(x) = V t ln (ND/p(x)). (9.33)

V t is the thermal voltage, or kbT/q. ND in this case is a scalar quantity, representing the maximum donor
concentration across the spatial domain.

Nonlinear Poisson
For harder problems, a better initial guess than can be obtained from the above expressions is often
necessary. Semiconductor PDE problems tend to be more difficult to solve for high doping levels and also
for complex geometries. One can approximate the solution to the drift diffusion semiconductor problem by
solving a nonlinear Poisson equation, given by

−∇ · (ε∇φ(x)) = q
(
NAe((φmin−φ(x))/V t) − NDe((φ(x)−φmax)/V t) + C(x)

)
. (9.34)

This equation is the same as (9.21), except that now the electron and hole densities are functions of the
electrostatic potential, so the equation is nonlinear. The variables NA and ND are the maximum acceptor
and donor concentrations. In equilibrium, they will approximate the maximum hole and electron
concentrations. This equation can easily be solved on the same mesh as the full drift-diffusion formulation
using a damped Newton method. Upon solution, the electron and hole densities are obtained by simply
evaluating the density terms in (9.34)

p(x) = NAe((φmin−φ(x))/V t) (9.35)

131

n(x) = NDe((φ(x)−φmax)/V t) (9.36)

For the case of no voltage being applied across the device, solving the nonlinear Poisson gives a result that
is very close to the drift-diffusion result, but is much easier to obtain. While (9.34) is nonlinear, it tends to
be very well behaved from a nonlinear solver point of view. Most of the difference between the nonlinear
Poisson solution and the DD solution for the unbiased case comes from the fact that (9.34) does not
account for generation-recombination effects.

In running the simulation, the result of the initial condition calculation is applied before performing the
initial steady-state calculation (often referred to as the DC operating point calculation). After the main
calculation is underway (transient, DC sweep, etc.), the results of the nonlinear Poisson solution are no
longer a valid initial guess, because (9.34) assumes equilibrium conditions.

9.4.1.4 Boundary Conditions

Boundary conditions at the electrodes for all three variables are Dirichlet, while boundary conditions
everywhere else are Neumann. At non-electrode boundaries, no current should escape, so the Neumann
condition is for zero flux. In the box integration scheme, this boundary condition is automatically imposed
by default. The values imposed on electron and hole densities at the electrode boundaries are determined
from the doping levels at those boundaries. In this work, we have applied the expressions

nbc =
1
2

(√
C2

bc + 4Ni2 + Cbc

)
, (9.37)

pbc =
1
2

(√
C2

bc + 4Ni2 − Cbc

)
, (9.38)

where nbc is the imposed value of electron density at a boundary, while pbc is the imposed value for hole
density. Also, Cbc is the doping level at the boundary. These expressions were taken from Selberherr [195],
and enforce both thermal equilibrium and a vanishing space charge at ohmic contacts.

The boundary conditions on the electrostatic potential are external inputs to the problem, which may come
from the user or from an external circuit simulator. Their application, however, is not as straightforward as
may first appear. Semiconductor devices will establish their own internal potential variation due to charge
separation caused by the doping. This can be observed by considering (9.33). Doping levels will usually be
different at each electrode boundary, so (9.33) will evaluate to a different value for each one.

Therefore, when an external potential is applied to a PDE device electrode, the boundary condition applied
at that electrode has to include an offset due to the built in potential. This offset is determined by evaluating
(9.33) at each boundary. The potential boundary condition which is applied is then:

φbc = φckt + φoffset (9.39)

It should be noted that for some PDE devices, the doping will not be constant along an electrode boundary.
For such cases, the imposed boundary conditions on all three variables need to vary accordingly along the
electrode.

132

9.4.2 Coupling Equations

A mixed-level problem will include the full set of circuit equations as well as the full set of device
equations. In addition, such a simulation will also require extra equations associated with the coupling to
complete the system. In order to couple a PDE-level device simulation to a circuit simulation, it is
necessary for the PDE device simulator to fulfill the role of a SPICE-style analog device. While the Xyce
device-package interface makes this relatively easy from a programming standpoint, in practice, the
PDE-device must provide currents and conductances as a function of voltage.

The interface between a PDE device simulation and a circuit simulation occurs at the device electrodes,
each of which are physically connected to a node of the circuit. The current flowing between the device and
the circuit must satisfy the equation

N∑
i=1

Ai · (Jn
i + Jp

i) = ic, (9.40)

where N is the number of mesh nodes along the electrode, Ai is the surface area associated with mesh
node i. Jn

i and Jp
i are the electron and hole current densities, respectively. The term on the right hand side

of (9.40), ic, is the circuit current which flows into circuit node 1.

Potentially, a large number of nodes on the PDE mesh lie on an electrode boundary, so the summation
necessary to obtain the total current may involve a relatively large number of terms. For a three
dimensional simulation, N could potentially be in the thousands.

Equation (9.40) is essentially a KCL equation, so while it involves terms from the PDE device, it is natural
to think of it as belonging to the circuit part of the problem. The coupling between the device and the
circuit is also enforced on the PDE side of the problem through boundary conditions on the electrode
potentials. Semiconductor devices, even when unbiased, possess a certain amount of internal potential
variation, due to variations in the doping. A semiconductor device which is not connected to a circuit, and
has no external potentials applied to it, will still have this internal potential variation. As a result, any
potentials applied to a PDE device that have been obtained from a connected circuit must be adjusted, to
account for the internal variation. This results in the equation

φbc = φcircuit + φoffset. (9.41)

Here φbc is the voltage boundary condition to be applied to the PDE device on the electrode, φcircuit is the
voltage at the circuit node which is connected to the electrode, and φoffset is different for each electrode
and depends upon the local doping. It is common for the variables of the PDE simulation to be scaled
differently than the variables of the circuit equation. Thus, both (9.40) and (9.41) need to take this into
account.

9.5 Solution Methods

This section focuses on solver methods employed by circuit, device and mixed-level simulation. Circuit
and device simulation have a number of similarities, without which a two-level Newton approach would
not be applicable. First, the similarities between circuit and device simulation from a solver point of view
are discussed, followed by a discussion of some of their differences. A discussion of coupling algorithms is
the last part of this section.

133

9.5.1 Similarities

Circuit simulation and PDE device simulation are similar in several regards. Both deal with the same basic
physical quantities - electrostatic potential and current. Both problems are nonlinear and implicit in time.

The solver structure consists of a nested set of solver loops. The outer loop is a control loop, which may be
a time integration loop or a DC sweep. The middle level is a nonlinear solver, and the inner-most entity is
the linear solver.

The system of equations at each time step is represented as

f(w) = 0 (9.42)

in which w is the solution vector and f is the system of equations. Equation (9.42) is solved using a
Newton method, in which the solution w is obtained from repeated solves of the equations

J∆w = −f , (9.43)

wk+1 = wk + ∆w, (9.44)

where k is the Newton iteration index. This set of equations is repeatedly evaluated until (9.42) is satisfied.

9.5.2 Differences

Circuit simulation and device simulation are different enough to have somewhat different solver needs, for
the time integrator, nonlinear solver, and linear solver. For the linear solver phase, PDE device simulation
is usually successful with iterative methods. For circuit simulation direct methods are generally much more
reliable than iterative methods, although research in this area is ongoing [27].

For the nonlinear solve, device simulation can easily be handled using a conventional damped Newton, as
long as the simulator is provided with a good initial guess. Equation (9.44) is modified as

wk+1 = wk + α∆w, (9.45)

in which α is a scalar that is adjusted such that wk+1 results in a reduced value for |f(wk+1)|.

Circuit simulation is somewhat more problematic, in that applying a single scalar α to the entire update is
often not adequate to converge the operating point calculation. Many of the nonlinear circuits in the Xyce
test suite will fail if such an approach is taken. A more effective approach for circuits is voltage
limiting [134]. The junction voltages of nonlinear devices such as BJT’s, MOSFET’s and diodes are
restricted from varying too much from one Newton iteration to the next. This is similar to damping, except
that it is applied on a device-by-device basis, and the limiting applied in one device may not be consistent
with the limiting applied in another. The implementation in Xyce is similar to that of legacy circuit
simulators, in that a correction due to voltage limiting has to be applied on the right hand side of
equation 9.43. This takes the form

J(w′)∆wtotal = −f(w′) + J(w′)∆wlimit, (9.46)

where ∆wlimit is the change in w at the current Newton step due to voltage limiting, and
∆wtotal = ∆wNewton + ∆wlimit. The quantities wk+1, wk and w′

k are solution vectors related by

w′
k = wk + ∆wlimit, (9.47)

134

wk+1 = w′
k + ∆wNewton. (9.48)

The limits are generally evaluated and applied in terms of voltage drops within individual devices, so the
correction term in (9.46) is applied during the load phase of the individual devices.

Although voltage limiting has been around for a long time [169], and has been surprisingly successful, it
has the drawback of being incompatible with other nonlinear solver methods. It is a source of non-smooth
behavior in part of the solver, which can be problematic. More recently, homotopy methods have been
applied successfully to circuit simulation [162, 163], and they have become the method of choice for
modern circuit codes.

9.5.3 Coupling Algorithms

As described in the introduction, techniques for circuit-device coupling have been described by
Mayaram [160], and later by Rotella [185]. In these works, two general approaches have been presented,
the “full Newton” method and the “two-level Newton” method.

9.5.3.1 Tight Coupling: Full Newton

The “full Newton” method is one in which the entire problem is solved simultaneously as part of a single
nonlinear system of equations. Each PDE device is represented by large sub-blocks of the Newton matrix,
and the circuit portion of the problem is also represented by a sub-block. In general, this will not be the
initial ordering chosen by Xyce. In its current capability, Xyce will treat each PDE device the same as it
would any other traditional SPICE-style device in the circuit from a topological perspective. As a result,
the “circuit” part of the matrix will often not be represented by a single continuous sub-block, but rather
will have many components in and around the PDE device sub-blocks.

9.5.3.2 Loose Coupling: Two-Level Newton

The “Two-Level Newton” was first proposed by Mayaram [160]. In this approach, the PDE device and
circuit problems are considered separately, with the required information being passed back and forth
between the simulators. The adjective “Two-Level” refers to the fact that the nonlinear solution of the
circuit problem is considered as an outer level control loop, while for PDE device problem(s), the nonlinear
solution is considered to be the inner level. In the most common implementation, the inner level PDE
device problem is completely solved at each circuit Newton step. This results in a much slower simulation
than the “full Newton” approach, but it has been shown to be much more robust [160, 185].

The PDE sub-problems are solved in the same manner as a stand-alone PDE simulator, with voltages from
the external circuit applied as boundary conditions. The circuit problem which comprises the outer loop, is
solved similarly to a stand-alone circuit code as well, with the PDE devices represented by extracted
conductances and currents. The procedure for extracting device conductances has been described in detail
by Mayaram [160]. The sub-block in the circuit matrix associated with each PDE device is an N x N
conductance matrix, where N is the number of electrodes. Each entry in this conductance matrix is given
by

Gmn =
∂im
∂Vn

=
∂Im

∂Vn
+

∂Im

∂w
∂w
∂Vn

, (9.49)

135

where m is the row index and n is the column index. From the perspective of the circuit Jacobian, m
corresponds to the KCL equation associated with the circuit node attached to themth electrode of the PDE
device, and n corresponds to the voltage variable for the circuit node attached to the nth electrode. Also,
im is the current at the circuit node attached to electrode m, Im is also a current, but represents the current
at electrode m, from the perspective of the PDE simulation. Of course

im(Vn) = Im(w, Vn). (9.50)

Most of the terms in (9.49) correspond to Jacobian terms that need to be calculated for the full Newton
approach. The first term of (9.49), ∂Im/∂Vn, corresponds to the PDE device contribution to the circuit
node KCL on the Jacobian matrix diagonal, and is zero ifm �= n. The vector ∂w/∂Vn is determined by
first rewriting (9.42) as

fPDE(wPDE(V), V) = 0. (9.51)

This is the equivalent of (9.42), except that it is only with respect to one PDE sub-problem. The residual
vector of the PDE device fPDE is the solution vector for the PDE device, and V refers to externally applied
voltages, which will be coming from the connected circuit. Taking the derivative of this system with
respect to V , and re-arranging, the linear system

JPDE
∂wPDE

∂Vn
= −∂fPDE

∂Vn
(9.52)

is obtained, where JPDE , or ∂fPDE/∂wPDE , is the Jacobian matrix from the PDE problem. This linear
system has to be solved for each electrode. The object ∂fPDE/∂Vn is a sparse vector with nonzero terms
only for mesh elements connected directly to the electrode n; It corresponds to a single column of the
full-Newton Jacobian.

Xyce has a slightly different implementation than the one described by Mayaram [160]. This design was
chosen in part for expedient implementation, as the same matrix structure can be used at both levels of the
two-Level Newton method. Equations can be removed from the problem by placing 1.0 on the diagonal
and 0.0 at every other location in the problem’s respective matrix row, and 0.0 for the corresponding
element in the residual vector. By using this shortcut, different parts of the problem can be “turned off” and
“turned on”, depending upon the current two-level Newton phase.

This implementation has some advantages. An optimal approach to a transient mixed-level simulation is to
have the simulator apply a two-level Newton algorithm for the DC operating point, and a full Newton
algorithm during the transient phase, and switching between the two modes requires very little work.
During the inner loop of the two-level solve, all the PDE devices are solved simultaneously even though
they are not coupled together. Several instances of (9.52) can also solved simultaneously as well, with the
nth electrode of each PDE device addressed in one matrix solve.

9.5.3.3 Loose Coupling: Modified Two-Level Newton

One of the major difficulties of solving a mixed-level problem is that PDE simulation is very sensitive to
the initial guess. The voltages of connected circuit nodes provide voltage boundary conditions to PDE
devices, and, over the course of a two-level-Newton solve, these voltages may change a great deal at each
outer loop step. A PDE simulator can often handle abrupt voltage boundary condition changes, if they are
on the order the built-in potential of the device. Changes much greater than that (hundreds of volts, or
thousands of volts, etc.) will almost always prevent the PDE problem from converging on the inner Newton
loop, if the result of the previous inner loop solve is used as the initial guess.

136

Mayaram [160] has proposed a modified two-level-Newton scheme, in which a prediction of the PDE
device solution can be obtained using the derivative information of the two-level Newton. This predicted
solution can then be used as an initial guess for the PDE problem’s Newton loop. Mayaram uses the
expression

wk+1
PDE = wk

PDE +
n=N∑
n=0

[
∂wPDE

∂Vn

]
∆Vn (9.53)

to get the initial guess for each problem, where k is the iteration index of the outer Newton loop and ∆Vn is
the change in applied voltage at the electrode n between outer loop iterations. A potential drawback of this
approach is that if ∆Vn is large enough, and negative, the resulting wk+1 may contain nonphysical
negative species densities. Equation (9.53) has been implemented in Xyce, but so far has not been very
successful because of this issue. However, using this technique to obtain the initial guess has been shown to
be very effective [160], so more study is needed. Possibly, if voltage limiting is employed (discussed later
in this document), the change in nodal voltage can be kept small enough for (9.53) to give a good guess.

9.5.3.4 Loose Coupling: Two-Level Newton with Continuation

A very robust approach to obtaining the solution to PDE sub-problems is to apply a simple continuation
algorithm to the PDE. At the beginning of each inner loop PDE solve, an assessment is made of how much
the connected circuit node voltages have changed. If this change is large, then instead of a single Newton
solve, the inner PDE problem is addressed with a series of Newton solves is undertaken. The electrode
voltage boundary conditions are changed gradually prior to each solve, and each solve is converged
completely before moving on to the next one.

Initially, we implemented the continuation algorithm to vary the electrode potentials by a fixed step-size
∆V at each continuation step. The maximum voltage change to which a PDE device can be subjected and
still achieve convergence is problem dependent, so it is difficult to predict exactly how much change can be
tolerated by each PDE. Using a constant step-size approach can result in taking a prohibitive number of
continuation steps, to account for the worst case scenario.

To overcome this we implemented a simple variable step-size continuation algorithm, in which the
step-size ∆V changes depending upon the success or failure of the previous attempted step. Each time a
continuation step is successful the step-size is increased by a factor α. For each failure, the step-size is
reduced by another factor β, and the step is re-taken. For this work, we chose α = 1.5 and β = 0.125. To
prevent the scheme from being too aggressive, the step-size is only increased when the number of
successive successful steps is equal to or greater than the most recent number of successive failed steps. By
using this variable step-size algorithm, the number of required continuation steps was often reduced by
over an order of magnitude compared with the constant step-size approach.

This approach to the two-level Newton has proven to be very robust. As of this writing, the inner-loop
solve has never failed using this approach, but it has the disadvantage of being relatively slow. If the circuit
voltages are changing a great deal, the continuation algorithm may take hundreds of steps, even using the
variable step-size algorithm. If the number of continuation steps required for the inner solve is steadily
increasing, that is usually a sign that the two-level algorithm is diverging. Fortunately, for most circuits,
large changes in nodal voltages only occur during the first few outer-loop Newton steps.

137

9.5.3.5 Voltage Limiting with Two-Level Newton

Voltage limiting can be applied to mixed-level simulation, and is often necessary for cases where the circuit
portion of the problem is difficult to solve. Applying it in the case of the full-Newton approach is
logistically problematic, but applying voltage limiting within the context of a two-level algorithm is
straightforward. The two-level Newton is easier because the correction term in (9.46) can be applied in
terms of the extracted conductances, instead of in terms of the equations of the PDE device.

Additionally, device simulation usually requires conventional Newton damping, but applying damping to
the PDE device part of the problem, while applying voltage limiting to the circuit part of the problem, is
very difficult. With a two-level approach, this issue is avoided. Also, by applying voltage limiting on the
circuit level, the change in nodal voltages seen by the PDE device is relatively small, and the number of
required continuation steps is correspondingly small.

138

9.6 Conclusions

A mathematical formulation for mixed-level simulation algorithms has been developed where different
physics interact at potentially different spatial resolutions in a single domain. To minimize the
implementation effort, explicit solution methods can be considered, however, implicit methods are
preferred if computational efficiency is of high priority. We present the use of a partial elimination
nonlinear solver technique to solve these mixed-level problems and show how these formulation are closely
coupled to SAND optimization approaches and sensitivity analyses. We discuss the details of a potential
application in the electrical simulation area. The implementation of these techniques are future work.

139

Chapter 10

Time-Domain Decomposition Iterative
Methods for the Solution of PDE
Constrained Optimization Problems

10.1 Introduction

Optimization problems governed by time dependent partial differential equations (PDEs) arise in the
context of optimal control, optimal design, and parameter identification problems in applications involving
fluid flow [2, 63, 101, 103, 104, 125, 140, 117, 118], convective-diffusive transport [7], phase transition
[112, 121], and superconductivity [102], among many others. One of the challenges that arises in the
numerical solution of such problems is the strong coupling in space and time of the state (solution of the
governing PDE), the so-called adjoint, and the control. This chapter discusses time-domain decomposition
to deal with this problem for a class of optimal control problems governed by parabolic PDEs

To make the discussion more concrete, we consider problems of the form

minimize
∫ T

0
l(t, y(t), u(t))dt + ψ(y(T)), (10.1a)

subject to

∂

∂t
y(t) + F (t, y(t), u(t)) = 0, t ∈ (0, T) (10.1b)

y(0) = y0. (10.1c)

In (10.1) the function u is the control to be determined and y denotes the solution of the partial differential
equation (10.1b) with initial condition (10.1c). All applications cited above, fit into this context with a
suitable problem formulation in a Banach or Hilbert space setting. The precise formulation is typically
problem dependent and for the various applications discussed in the references above. Additionally,
abstract infinite dimensional optimization problems governed by partial differential equations (PDEs) and
ordinary differential equations (ODEs) are studied in [81] and [127], respectively. To present the issues and
discuss the ideas for the solution of (10.1) it is sufficient to proceed formally, at this time.

140

As mentioned earlier, one challenge for the practical solution of optimization problems of the type (10.1) is
their strong coupling in space and time, which can be seen from the necessary optimality conditions for
(10.1). Formally, the necessary optimality conditions for (10.1) are given as follows. If y, u solve (10.1),
then there exists a function λ such that y, u, λ solve the state equations (10.1b),(10.1c), the adjoint
equations

− ∂

∂t
λ(t) + Fy(t, y(t), u(t))∗λ(t) = −∇yl(t, y(t), u(t)), t ∈ (0, T), (10.2a)

λ(T) = −∇ψ(y(T)), (10.2b)

and the equation

∇ul(t, y(t), u(t)) + Fu(t, y(t), u(t))∗λ(t) = 0, t ∈ (0, T). (10.3)

Here subscripts u and y denote partial derivatives and given an operator M , its adjoint is denoted byM∗. If
M is a real matrix,M∗ = MT .

While the state equation (10.1b),(10.1c) is solved forward in time, the adjoint equation (10.2) is solved
backward in time. Both equations are coupled via (10.3). In most applications of interest, the amount of
storage required to hold state, adjoint and control information easily exceeds the amount of memory
available.

To cope with the huge storage requirements, several techniques have been proposed. Among them are
storage management techniques instantaneous control, receeding horizon or moving horizon methods and
model reduction techniques. See [111] for a brief overview in the context of time domain decomposition
methods. We note that instantaneous control, receeding horizon or moving horizon methods as well as
model reduction techniques also address aspects other than the storage requirements arising in the practical
solution of problems of the type (10.1). Instantaneous control, receeding horizon, moving horizon
methods, and model reduction techniques alter the optimization problem that is ultimately been solved.
The focus of this paper is on a class of iterative methods for the solution of (10.1).

Our time–domain decomposition is a multiple shooting approach that equivalently reformulates (10.1) as a
so-called discrete-time optimal control (DTOC) problem. For our target problems the operators/matrices
arising in the multiple shooting reformulation of the problem cannot be computed explicitly; only
operator/matrix–vector products can be formed. Therefore existing multiple shooting implementations for
systems of ODEs or ‘small’ PDEs (see, e.g., [13, 34, 41, 45, 73, 142, 143, 176, 202]), which rely on matrix
factorizations are not applicable. Our approach is matrix free. It requires the solution of discretized PDEs
(10.1b), (10.2), or linearizations of (10.1b) on smaller time domains and, depending on the iterative scheme
build on the time-domain decomposition, the approximate iterative solution of optimal control problems
which are essentially smaller copies of (10.1) restricted to smaller time domains. For these subproblems
existing solver methods can be used.

The time-domain decomposition of (10.1) offers two potential benefits. First, depending on the solution
algorithm used to solve the time-decomposed problem, parallelism is introduced in the time-domain.
Additional parallelism may be introduced into the solution of subtasks within the individual time domains.
Secondly, the time sub-interval problems are smaller than (10.1). Even if solutions to state and adjoint
equations restricted to time subdomains cannot be stored in memory, storage management techniques [99]
are more efficient the larger the number of checkpoints (i.e., the larger the amount of storage) per number
of time steps (see [120]).

141

10.2 Temporal decomposition of the problem

We use a multiple shooting approach to reformulate the optimization problem (10.1). We select a partition

0 = T0 < T1 . . . < TN = T

of [0, T] and we introduce the auxiliary variables

yi, n = 0, . . . , N − 1,

where
y0

def= y0.

Moreover, we set
ui = u|(Ti,Ti+1), i = 0, . . . , N − 1.

Assume that for every yi ∈ H , ui ∈ Ui the time-subdomain state equation

∂

∂t
yi(t) + F (t, yi(t), ui(t)) = 0, t ∈ (Ti, Ti+1) (10.4a)

yi(Ti) = yi, (10.4b)

i = 0, . . . , N − 1, has a unique solution
yi(·; yi, ui).

If we enforce the continuity conditions

yi+1 = yi(Ti+1; yi, ui), i = 0, . . . , N − 2, (10.5)

then the function y, which is defined by ‘glueing’ the yi’s together, solves the original state equation
(10.1b), (10.1c). If y solves (10.1b), (10.1c), then yi = y(Ti), yi = y|Ω×(Ti,Ti+1), i = 0, . . . , N − 1, solves
(10.4),(10.5) and vice versa.

Thus, we can rewrite the optimal control problem (10.1) equivalently as follows:

Minimize
N−1∑
i=0

∫ Ti+1

Ti

l(t, yi(t; yi, ui), ui(t))dt + ψ(yN−1(TN ; yN−1, uN−1)) (10.6)

subject to yi+1 = yi(Ti+1; yi, ui), i = 0, . . . , N − 2.

Here yi(·; yi, ui) is the (by assumption) unique solution of (10.4) for given data yi and ui. Problems of the
form (10.6) are also known as discrete time optimal control problems (DTOCPs).

Note, the optimal control problem in the original formulation (10.1) is an optimization problem in the
variables y, u. Its reformulation (10.6) is an optimization problem in the variables yi, i = 1, . . . , N − 1,
and ui, i = 0, . . . , N − 1. The problem (10.6) is a multiple shooting reformulation of (10.1). This
reformulation is well-known in the context of control problems governed by ODEs or DAEs
[13, 34, 45, 73, 142, 143, 202]. The difference between the problems we consider and the problems

142

considered in the traditional multiple shooting context is their size. Techniques discussed e.g., in the
references above for the solution of multiple shooting formulations of optimal control problems governed
by ODEs, DAEs, or even ‘small’ PDEs are not feasible in our context. The goal of this paper is the
discussion of matrix-free methods for the solution of (10.6).

The Lagrangian associated with (10.6) is given by

L̄(y, u, λ) =
N−1∑
i=0

∫ Ti+1

Ti

l(t, yi(t; yi, ui), ui(t))dt + ψ(yN−1(TN ; yN−1, uN−1))

+
N−2∑
i=0

〈λi+1, yi+1 − yi(Ti+1; yi, ui)〉. (10.7)

For brevity we set yi = yi(·; yi, ui) and for i = 1, . . . , N − 1 we consider

− ∂

∂t
λi(t) + Fy(t, yi(t), ui(t))∗λi(t) = −∇yl(t, yi(t), ui(t)), t ∈ (Ti, Ti+1), (10.8a)

λi(Ti+1) =
{

−∇ψ(yi(T)), if i = N − 1,
λi+1, else.

(10.8b)

Let λi(·; yi, ui, λi+1), i = 1, . . . , N − 2, λN−1(·; yN−1, uN−1), be the solution of (10.8). To avoid
distinction between i = 1, . . . , N − 2, and i = N − 1, we use the notation λi(·; yi, ui, λi+1) for all
i = 1, . . . , N − 1. Since there is no λN , this should be understood as λi(·; yi, ui) if i = N − 1.

Under suitable conditions, the necessary optimality conditions for the problem (10.6) are given by the
DTOCP adjoint equations

λi = λi(Ti; yi, ui, λi+1), i = 1, . . . , N − 1, (10.9a)

the DTOCP gradient equation

∇ul(t, yi(t; yi, ui), ui(t)) + Fu(t, yi(t; yi, ui), ui(t))∗λi(t; yi, ui, λi+1) = 0, (10.9b)

t ∈ (Ti, Ti+1), i = 0, . . . , N − 1,

and the DTOCP state equation

yi+1 = yi(Ti+1; yi, ui), i = 0, . . . , N − 2. (10.9c)

10.3 The Lagrange-Newton-SQP Method

We view (10.9) as a system
G(x) = 0 (10.10)

and solve it using Newton’s method. This approach is locally (i.e., if x is near a point that satisfies the
second order sufficient optimality conditions) equivalent to the Lagrange-Newton-SQP method.

143

The variables x and the operator G in (10.10) are specified in Figure 10.1. The evaluation ofG(x) is
easily parallelized across time subdomains.

Algorithm 13. [Evaluation ofG(x)] For i = 0, . . . , N − 1 do (in parallel)

1. Compute solution yi(t; yi, ui) of the time subinterval state equation (10.4).

2. Compute solution λi(t; yi, ui, λi+1) of the time subinterval adjoint equation (10.8).

3. Evaluate

∇ul(t, yi(t; yi, ui), ui(t)) + Fu(t, yi(t; yi, ui), ui(t))∗λi(t; yi, ui, λi+1) t ∈ (Ti, Ti+1),
yi+1 − yi(Ti+1; yi, ui),
λi − λi(Ti; yi, ui, λi+1).

144

F
ig

ur
e

10
.1

.T
he
va
ri
ab
le
s
x
an
d
th
e
op
er
at
or

G

x
=

⎛ ⎜ ⎝

y
1

u
0

y
2

u
1

λ
1

y
3

u
2

λ
2

y
N

−
1

u
N

−
2

λ
N

−
2

u
N

−
1

λ
N

−
1

⎞ ⎟ ⎠,
G

(x
)

=

⎛ ⎜ ⎝

∇
u
l(

·,y
0(

·;y
0,

u
0)

,u
0)

+
F

u
(·,

y 0
(·;

y
0,

u
0)

,u
0)

∗ λ
0(

·;y
0,

u
0,

λ
1)

y
1
−

y 0
(T

1;
y

0,
u

0)
,

λ
1
−

λ
1(

T
1;

y
1,

u
1,

λ
2)

∇
u
l(

·,y
1(

·;y
1,

u
1)

,u
1)

+
F

u
(·,

y 1
(·;

y
1,

u
1)

,u
1)

∗ λ
1(

·;y
1,

u
1,

λ
2)

y
2
−

y 1
(T

2;
y

1,
u

1)
λ

2
−

λ
2(

T
2;

y
2,

u
2,

λ
3)

∇
u
l(

·,y
2(

·;y
2,

u
2)

,u
2)

+
F

u
(·,

y 2
(·;

y
2,

u
2)

,u
2)

∗ λ
2(

·;y
2,

u
2,

λ
3)

y
3
−

y 2
(T

3;
y

2,
u

2)
.

λ
N

−
2
−

λ
N

−
2(

T
N

−
2;

y
N

−
2,

u
N

−
2,

λ
N

−
1)

∇
u
l(

·,y
N

−
2(

·;y
N

−
2,

u
N

−
2)

,u
N

−
2)

+
F

u
(·,

y N
−

2(
·;y

N
−

2,
u

N
−

2)
,u

N
−

2)
∗ λ

N
−

2(
·;y

N
−

2,
u

N
−

2,
λ

N
−

1)
y

N
−

1
−

y N
−

2(
T

N
−

1;
y

N
−

2,
u

N
−

1)
λ

N
−

1
−

λ
N

−
1(

T
N

−
1;

y
N

−
1,

u
N

−
1)

∇
u
l(

·,y
N

−
1(

·;y
N

−
1,

u
N

−
1)

,u
N

−
1)

+
F

u
(·,

y N
−

1(
·;y

N
−

1,
u

N
−

1)
,u

N
−

1)
∗ λ

N
−

1(
·;y

N
−

1,
u

N
−

1)

⎞ ⎟ ⎠.

145

Formally (this can be made rigorous for the applications cited in the introdution) the Fréchet derivative of
G at x in the direction

δx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δy1

δu0

δy2

δu1

δλ1
...
...

δyN−1

δuN−2

δλN−2

δuN−1

δλN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
involves the solution zi = zi(·; yi, ui; δyi, δui) of the linearized time subinterval state equation

∂

∂t
zi(t) + Fy(t, yi(t; yi, ui), ui(t)) zi(t)

+Fu(t, yi(t; yi, ui), ui(t)) δui(t) = 0, t ∈ (Ti, Ti+1) (10.11a)

zi(Ti) =

{
0, if i = 0,
δyi, else,

(10.11b)

i = 0, . . . , N − 1, where yi(·; yi, ui) is the solution of (10.4), and the solution
ηi = ηi(·; yi, ui, λi+1, δyi, δui, δλi+1) of the linearized time subinterval adjoint equation

− ∂

∂t
ηi(t) + Fy(t, yi(t; yi, ui), ui(t))∗ηi(t)

= −
(
Fyy(t, yi(t; yi, ui), ui(t)) zi(t; yi, ui; δyi, δui)

)∗
λi(t; yi, ui, λi+1)

−
(
Fyu(t, yi(t; yi, ui), ui(t)) δui(t)

)∗
λi(t; yi, ui, λi+1)

−∇yul(t, yi(t; yi, ui), ui(t))δui(t)
−∇yyl(t, yi(t; yi, ui), ui(t))zi(t; yi, ui; δyi, δui), t ∈ (Ti, Ti+1), (10.12a)

ηi(Ti+1) =

{
−∇yyψ(yi(T ; yi, ui))zi(T ; yi, ui; δyi, δui), if i = N − 1,
δλi+1, else,

(10.12b)

i = 1, . . . , N − 1, where yi(·; yi, ui) is the solution of (10.4), λi(·; yi, ui, λi+1) is the solution of (10.8),
and zi(·; yi, ui; δyi, δui) is the solution of the linearized state equation (10.11).

The Fréchet derivative ofG at x in the direction δx is specified in Figure 10.2.

146

F
ig

ur
e

10
.2

.
T
he
op
er
at
or
ve
ct
or
pr
od
uc
t
G

′ (
x
)δ

x
.
(H
er
e,

y
i

=
y i

(·;
y

i,
u

i)
an
d

λ
i

=
λ

i(
·;

y
i,

u
i,

λ
i+

1
)
ar
e
th
e
so
lu
tio
n
of
th
e
tim
e

su
bi
nt
er
va
l
st
at
e
eq
ua
tio
n
(1
0.
4)
an
d
th
e
tim
e
su
bi
nt
er
va
l
ad
jo
in
t
eq
ua
-

tio
n
(1
0.
8)
,
re
sp
ec
tiv
el
y,
an
d

z
i

=
z i

(·;
y

i,
u

i,
δy

i,
δu

i)
an
d

η
i

=
η i

(·;
y

i,
u

i,
λ

i+
1
,δ

y
i,

δu
i,

δλ
i+

1
)
ar
e
th
e
so
lu
tio
n
of
th
e
tim
e
su
bi
nt
er
-

va
l
lin
ea
ri
ze
d
st
at
e
eq
ua
tio
n
(1
0.
11
)
an
d
th
e
tim
e
su
bi
nt
er
va
l
lin
ea
ri
ze
d

ad
jo
in
te
qu
at
io
n
(1
0.
12
),
re
sp
ec
tiv
el
y)
.

G
′ (
x
)δ

x
=

⎛ ⎜ ⎝∇
u
u
l(

·,y
0,

u
0)

δu
0
+

∇
u
y
l(

·,y
0,

u
0)

z 0
+
(F

u
u
(·,

y 0
,u

0)
δu

0) ∗ λ
0
+
(F

u
y
(·,

y 0
,u

0)
z 0

) ∗ λ
0
+

F
u
(·,

y 0
,u

0)
∗ η

0

δy
1
−

z 0
(T

1)
,

δλ
1
−

η 1
(T

1)

∇
u
u
l(

·,y
1,

u
1)

δu
1
+

∇
y
u
l(

·,y
1,

u
1)

z 1
+
(F

u
u
(·,

y 1
,u

1)
δu

1) ∗ λ
1
+
(F

u
y
(·,

y 1
,u

1)
z 1

) ∗ λ
1
+

F
u
(·,

y 1
,u

1)
∗ η

1

δy
2
−

z 1
(T

2)
δλ

2
−

η 2
(T

2)

∇
u
u
l(

·,y
2,

u
2)

δu
2
+

∇
u
y
l(

·,y
2,

u
2)

z 2
+
(F

u
u
(·,

y 2
,u

2)
δu

2) ∗ λ
2
+
(F

u
y
(·,

y 2
,u

2)
z 2

) ∗ λ
2
+

F
u
(·,

y 2
,u

2)
∗ η

2

δy
3
−

z 2
(T

3)
.

λ
N

−
2
−

λ
N

−
2(

T
N

−
2;

y
N

−
2,

u
N

−
2,

λ
N

−
1)

∇
u
u
l(

·,y
N

−
2,

u
N

−
2)

δu
N

−
2
+

∇
u
y
l(

·,y
N

−
2,

u
N

−
2)

z N
−

2
..

.

..
.
+
(F

u
u
(·,

y N
−

2,
u

N
−

2)
δu

N
−

2) ∗ λ
N

−
2
+
(F

u
y
(·,

y N
−

2,
u

N
−

2)
z N

−
2

) ∗ λ
N

−
2
+

F
u
(·,

y N
−

2,
u

N
−

2)
∗ η

N
−

2

δy
N

−
1
−

z N
−

2(
T

N
−

1)
δλ

N
−

1
−

η N
−

1(
T

N
−

1)
∇

u
u
l(

·,y
N

−
1,

u
N

−
1)

δu
N

−
1
+

∇
u
y
l(

·,y
N

−
1,

u
N

−
1)

z N
−

1
..

.

..
.
+
(F

u
u
(·,

y N
−

1,
u

N
−

1)
δu

N
−

1) ∗ λ
N

−
1
+
(F

u
y
(·,

y N
−

1,
u

N
−

1)
z N

−
1

) ∗ λ
N

−
1
+

F
u
(·,

y N
−

1,
u

N
−

1)
∗ η

N
−

1

⎞ ⎟ ⎠.

147

The computations required to compute the Fréchet derivative ofG at x in a direction δx are detailed in
Algorithm 14.

Algorithm 14. [Evaluation ofG′(x)δx]

For i = 0, . . . , N − 1 do (in parallel)

1. Compute the solution yi = yi(·; yi, ui) of the time subinterval state equation (10.4) (by resolving
(10.4) or by retreiving yi(·; yi, ui) from storage).

2. Compute the solution λi = λi(·; yi, ui, λi+1) of the time subinterval adjoint equation (10.8) (by
resolving (10.4) or by retreiving λi(·; yi, ui, λi+1) from storage).

3. Compute the solution zi = zi(·; yi, ui, δyi, δui) of the time subinterval linearized state equation
(10.11).

4. Compute the solution ηi = ηi(·; yi, ui, λi+1, δyi, δui, δλi+1) of the time subinterval lineearized
adjoint equation (10.12).

5. Evaluate

δλi − ηi(·; yi, ui, λi+1, δyi, δui, δλi+1),

∇uul(t, yi(t; yi, ui), ui(t))δui(t)
+∇uyl(t, yi(t; yi, ui), ui(t))zi(t; yi, ui, δyi, δui)

+
(
Fuu(t, yi(t; yi, ui), ui(t)) δui(t)

)∗
λi(t; yi, ui, λi+1)

+
(
Fuy(t, yi(t; yi, ui), ui(t)) zi(t; yi, ui, δyi, δui)

)∗
λi(t; yi, ui, λi+1)

+Fu(t, yi(t; yi, ui), ui(t))∗ηi(t; yi, ui, λi+1, δyi, δui, δλi+1) t ∈ (Ti, Ti+1), (10.13)

δyi+1 − zi(·; yi, ui, δyi, δui).

With Algorithms 13 and 14 we are now able to execute an inexact Newton method. The operator G′(x)
cannot be computed explicitly, only operator-vector products can be computed via Algorithm 14. In
principle, many Krylov subspace methods can be used to solve the Newton system

G′(x)δx = −G(x). (10.14)

Figure 10.3 provides a general overview of the above described solution procedure in comparison to a
standard integration procedure.

In practice, however, one also needs a preconditioner. One class of preconditioners will be discussed in the
next section.

148

149

10.4 Iterative solution of the Newton system

10.4.1 The Newton system

A closer look at the operator G′(x) specified in Figure 10.2 will reveal that it has a block tridiagonal
structure. This motivates the application of several classical, operator splitting based iterative methods. In
our application, they have have nice optimal control interpretations. This section follows [111].

We consider G′(x)δx = b, where b is an arbitrary vector whose ith block component is given by
(c̄i, d̄i, b̄i). The ith block ofG′(x)δx = b is given by (with obvious modifications for i = 0 and
i = N − 1):

δλi − ηi(·; yi, ui, λi+1, δyi, δui, δλi+1) = c̄i (10.15a)

∇uul(t, yi(t; yi, ui), ui(t))δui(t)
+∇uyl(t, yi(t; yi, ui), ui(t))zi(t; yi, ui, δyi, δui)

+
(
Fuu(t, yi(t; yi, ui), ui(t)) δui(t)

)∗
λi(t; yi, ui, λi+1) (10.15b)

+
(
Fuy(t, yi(t; yi, ui), ui(t)) zi(t; yi, ui, δyi, δui)

)∗
λi(t; yi, ui, λi+1)

+Fu(t, yi(t; yi, ui), ui(t))∗ηi(t; yi, ui, λi+1, δyi, δui, δλi+1) = d̄i(t) t ∈ (Ti, Ti+1),

δyi+1 − zi(·; yi, ui, δyi, δui) = b̄i. (10.15c)

The ith block (10.15) depends only on (δyi, δui−1, δλi−1), (δyi+1, δui, δλi), and (δyi+2, δui+1, δλi+1).
Thus, the operator G′(x) has block-tridiagonal structure.

We will show next that given (δyi, δui−1, δλi−1) and (δyi+2, δui+1, δλi+1), the ith block (10.15) can be
solved for (δyi+1, δui, δλi), and and that this solution of the ith block (10.15) corresponds to solving a
linear quadratic optimal control problem on the time subinterval (Ti, Ti+1).

By definition, zi = zi(·; yi, ui, δyi, δui) and ηi = ηi(·; yi, ui, λi+1, δyi, δui, δλi+1) satisfy (10.11) and
(10.12), respectively. Combining these definitions of zi and ηi with (10.15), we obtain the following
system of coupled differential equations (for brevity we set yi = yi(·; yi, ui) and λi = λi(·; yi, ui, λi+1))

− ∂

∂t
ηi(t) + Fy(t, yi(t), ui(t))∗ηi(t)

= −
(
Fyy(t, yi(t), ui(t)) zi(t)

)∗
λi(t)

−
(
Fyu(t, yi(t), ui(t)) δui(t)

)∗
λi(t)

−∇yul(t, yi(t), ui(t))δui(t)
−∇yyl(t, yi(t), ui(t))zi(t), t ∈ (Ti, Ti+1), (10.16a)

ηi(Ti+1) =

{
−∇yyψ(yi(T))zi(T), if i = N − 1,
δλi+1, else,

(10.16b)

150

∇uul(t, yi(t), ui(t))δui(t)
+∇uyl(t, yi(t), ui(t))zi(t)

+
(
Fuu(t, yi(t), ui(t)) δui(t)

)∗
λi(t)

+
(
Fuy(t, yi(t), ui(t)) zi(t)

)∗
λi(t)

+Fu(t, yi(t), ui(t))∗ηi(t) = d̄i(t) t ∈ (Ti, Ti+1), (10.16c)

∂

∂t
zi(t) + Fy(t, yi(t), ui(t)) zi(t)

+Fu(t, yi(t), ui(t)) δui(t) = 0, t ∈ (Ti, Ti+1) (10.16d)

zi(Ti) =

{
0 if i = 0,
δyi, else,

(10.16e)

and

δλi − ηi(Ti) = c̄i(t), (10.16f)

δyi+1 − zi(Ti+1) = b̄i(t). (10.16g)

Given yi, ui, λi+1, yi, λi, and δyi, δλi+1, the system (10.16a)–(10.16e) are the optimality conditions for a
linear quadratic optimal control problem in the control and state variables δui and zi, respectively and the
corresponding adjoint variables ηi. More precisely, the system (10.16a)–(10.16e) are the necessary
optimality conditions for the following linear quadratic optimal control problem in the control and state
variables δui and zi, respectively:

Minimize
∫ Ti+1

Ti

(1
2
〈∇yyl(t, yi(t), ui(t))zi(t), zi(t)〉

+〈∇uyl(t, yi(t), ui(t))zi(t), δui(t)〉

+
1
2
〈∇uul(t, yi(t), ui(t))δui(t), δui(t)〉 + 〈d̄i(t), δui(t)〉

+
1
2
〈Fyy(t, yi(t), ui(t))(zi(t), zi(t)), λi(t)〉

+〈Fyu(t, yi(t), ui(t))(zi(t), δui(t)), λi(t)〉

+
1
2
〈Fuu(t, yi(t), ui(t))(δui(t), δui(t)), λi(t)〉

)
dt

+〈δλi+1, zi(Ti+1)〉 (10.17a)

subject to

∂

∂t
zi(t) + Fy(t, yi(t), ui(t)) zi(t)

+Fu(t, yi(t), ui(t)) δui(t) = 0, t ∈ (Ti, Ti+1) (10.17b)

zi(Ti) =

{
0 if i = 0,
δyi, else,

(10.17c)

151

For i = N − 1, the term 〈δλi+1, zi(Ti+1)〉 in the objective function (10.17a) has to be replaced by
〈∇yyψ(yi(T))zi(T), zi(T)〉.

10.4.2 Gauss–Seidel Iterations

LetD, −L, −U be the block diagonal part, the strictly lower block triangular part, and the strictly upper
block triangular part ofG′(x), respectively. Thus,

G′(x) = D − L − U.

We will look at three block Gauss–Seidel (GS) iterations (see, e.g., [14], [96], [189], [208]): The forward
GS method given by

δxk+1 = (D − L)−1(b + Uδxk), (10.18)

the backward GS method
δxk+1 = (D − U)−1(b + Lδxk), (10.19)

and the forward–backward GS method

δxk+1/2 = (D − L)−1(b + Uδxk),
δxk+1 = (D − U)−1(b + Lδxk+1/2),

(10.20)

where b = −G(x), in the case we apply the GS method directly to the solution of (10.14), or b = 0, if we
use the GS method as a preconditioner.

In the following we will concentrate on the description of (10.18). From this (10.19), (10.20), the block
Jacobi method, and even the block SOR method can be easily derived. The implementation of the forward
block GS method is described in Algorithm (15).

Algorithm 15. [Forward Gauss-Seidel Method]

Computation of δx ← (D − L)−1(b + Uδx) with b = −G(x) or b = 0.

For i = 0, . . . , N − 1 do

1. Compute the solution yi = yi(·; yi, ui) of the time subinterval state equation (10.4) (by resolving
(10.4) or by retreiving yi(·; yi, ui) from storage).

2. Compute the solution λi = λi(·; yi, ui, λi+1) of the time subinterval adjoint equation (10.8) (by
resolving (10.4) or by retreiving λi(·; yi, ui, λi+1) from storage).

3. If b = −G(x), then evaluate

c̄i = −λi + λi(Ti),
d̄i(t) = −∇ul(t, yi(t), ui(t)) − Fu(t, yi(t), ui(t))∗λi(t) t ∈ (Ti, Ti+1),

b̄i = −yi+1 + yi(Ti+1),

else (if b = 0), set
c̄i = 0, d̄i = 0, b̄i = 0.

(If i = 0, then c̄0 is not needed. If i = N − 1, then b̄N−1 is not needed.)

152

4. Compute the solution zi, δui and corresponding adjoint variable ηi of (10.17).

5. Set

δλi = c̄i + ηi(Ti), (only if i = 1, . . . , N-1)

δyi+1 = b̄i + zi(Ti+1; yi, ui) (only if i = 0, . . . , N-2).

10.5 Application to the Optimal Control of Burgers Equation

As an example, we consider an optimal boundary control problem for the one-dimensional Burgers
equation. The objective function is least squares type and the controls u0, u1 are applied through Robin
boundary conditions. The control problem can be stated as follows.

Minimize
α1

2

∫ T

0

∫ 1

0
‖y(t, x) − yd(t, x)‖2dxdt +

α2

2

∫ 1

0
‖y(T, x) − yT (x)‖2dx

+
1
2

∫ T

0
u2

0(t) + u2
1(t)dt (10.21a)

subject to

∂

∂t
y(t, x) − νyxx(t, x) +

1
2
(y2(t, x))x = f(t, x) (t, x) ∈ (0, T) × (0, 1), (10.21b)

−νyx(t, 0) + σ0y(t, 0) = u0(t) t ∈ (0, T), (10.21c)

νyx(t, 1) + σ1y(t, 1) = u1(t) t ∈ (0, T), (10.21d)

y(0, x) = y0(x) x ∈ (0, 1). (10.21e)

Here α1, α2 > 0, ν > 0, σ0, σ1 > 0 are given parameters and yd, f ∈ L2(0, T, L2(Ω)), y0 ∈ L2(Ω) are
given functions. This control problem is considered in [213]; a corresponding distributed control problem
is studied in [119]. We refer to those papers for additional details.

The state equation (10.21b)–(10.21d) are interpreted in the standard weak sense, which is introduced next.
Define

W (0, T) =
{

φ ∈ L2(0, T,H1(Ω)) :
∂

∂t
φ ∈ L2(0, T,H1(Ω)′)

}
A function y ∈ W (0, T) is called a weak solution of the state equation (10.21b)–(10.21d) if y(0) = y0 in
L2(Ω) and

〈 ∂

∂t
y(t), φ〉(H1)′,H1 + σ1y(t, 1)φ(1) + σ0y(t, 0)φ(0)

+
∫ 1

0
νyx(t, x)φx(x) + y(t, x)yx(t, x)φ(x)dx

−
∫ 1

0
f(t, x)φ(x)dx − u0(t)φ(0) − u1(t)φ(1) = 0 (10.22)

for all φ ∈ H1(Ω).

153

The Lagrangian corresponding to (10.21a), (10.22) is given by

L(y, u0, u1, λ) =
α1

2

∫ T

0

∫ 1

0
‖y(t, x) − yd(t, x)‖2dxdt +

α2

2

∫ 1

0
‖y(T, x) − yT (x)‖2dx

+
1
2

∫ T

0
u2

0(t) + u2
1(t)dt

+
∫ T

0

(
〈 ∂

∂t
y(t), λ(t)〉(H1)′,H1 + σ1y(t, 1)λ(t, 1) + σ0y(t, 0)λ(t, 0)

+
∫ 1

0
νyx(t, x)λx(t, x) + y(t, x)yx(t, x)λ(t, x)dx

−
∫ 1

0
f(t, x)φ(x)dx − u0(t)λ(t, 0) − u1(t)λ(t, 1)

)
dt. (10.23)

Optimality conditions for (10.21a), (10.22) consist of the state equations (10.22) with initial conditions
y(0) = y0 in L2(Ω), the adjoint equations

− 〈 ∂

∂t
λ(t), φ〉(H1)′,H1 + σ1λ(t, 1)φ(1) + σ0λ(t, 0)φ(0)

+
∫ 1

0
νλx(t, x)φx(x) + y(t, x)λ(t, x)φx(x) + yx(t, x)λ(t, x)φ(x)dx

= − α1

∫ 1

0
(y(t, x) − yd(t, x))φ(x)dx (10.24a)

for all φ ∈ H1(Ω) with final conditions

λ(T) = −α2(y(T) − yT) in L2(0, 1) (10.24b)

and the equations
u0 − λ(., 0) = 0, u1 − λ(., 1) = 0 in L2(0, T). (10.25)

Equation (10.24) is equivalent to

− 〈 ∂

∂t
λ(t), φ〉(H1)′,H1 + (σ1 + y(t, 1))λ(t, 1)φ(1) + (σ0 − y(t, 0))λ(t, 0)φ(0)

+
∫ 1

0
νλx(t, x)φx(x) − y(t, x)λx(t, x)φ(x)dx

= − α1

∫ 1

0
(y(t, x) − yd(t, x))φ(x)dx ∀φ ∈ H1(Ω) (10.26)

and are the weak form corresponding to

− ∂

∂t
λ(t, x) − νλxx(t, x) − y(t, x)λx(t, x) = −α1(y(t, x) − yd(t, x),

(t, x) ∈ (0, T) × (0, 1), (10.27a)

−νλx(t, 0) + (σ0 − y(t, 0))λ(t, 0) = 0, t ∈ (0, T), (10.27b)

νλx(t, 1) + (σ1 + y(t, 1))λ(t, 1) = 0, t ∈ (0, T), (10.27c)

λ(T, x) = −α2(y(T, x) − yT (x)) x ∈ (0, 1). (10.27d)

154

For the time decomposition of (10.21a), (10.22) we select time intervals 0 = T0 < T1 . . . < TN = T , we
introduce the auxiliary variables

yi ∈ H
def= L2(0, 1), i = 0, . . . , N − 1,

where y0
def= y0 and we set

u0,i = u0|(Ti,Ti+1), u1,i = u1|(Ti,Ti+1) ∈ Ui
def= L2(Ti, Ti+1) i = 0, . . . , N − 1.

The time-domain decomposition of (10.21a), (10.22) is now straightforward. The time subdomain state
equation (10.4) corresponds to (10.22) restricted to (Ti, Ti+1) with initial conditions yi(Ti) = yi, time
subdomain adjoint equation (10.8) corresponds to (10.24a) restricted to (Ti, Ti+1) with final conditions
λi(Ti+1) = λi+1, i = 1, . . . , N − 2, λi(Ti+1) = −α2(y(T) − yT), i = N − 1, and the time subdomain
gradient equation (10.9b) corresponds to (10.25) restricted (Ti, Ti+1) (since we have two control
components, there are two equations). We omitt the explicit statement of (10.4), (10.8) and (10.9b) for this
application.

For this application, the objective function is quadratic in the states and control and has no cross-terms.
The state equation is linear in the controls and the only nonlinearity in the state is given by the advective
term yyx. Hence for this application the equations (10.11), (10.12), (10.16c) and the local linear quadratic
optimal control problem (10.17) simplify: For this application the linearized time subinterval state equation
(10.11) is given by

〈 ∂

∂t
zi(t), φ〉(H1)′,H1 + σ1zi(t, 1)φ(1) + σ0zi(t, 0)φ(0)

+
∫ 1

0
ν(zi)x(t, x)φx(x) + zi(t, x)(yi)x(t, x)φ(x) + yi(t, x)(zi)x(t, x)φ(x)dx

− δu0,i(t)φ(0) − δu1,i(t)φ(1) = 0 (10.28a)

for all φ ∈ H1(Ω) with initial condition

zi(Ti) =

{
0, if i = 0,
δyi, else

in L2(0, 1), (10.28b)

and the linearized time subinterval adjoint equation (10.12) becomes

− 〈 ∂

∂t
ηi(t), φ〉(H1)′,H1 + σ1ηi(t, 1)φ(1) + σ0ηi(t, 0)φ(0)

+
∫ 1

0
ν(ηi)x(t, x)φx(x) + yi(t, x)ηi(t, x)φx(x) + (yi)x(t, x)ηi(t, x)φ(x)dx

= −
∫ 1

0
zi(t, x)λi(t, x)φx(x) + (zi)x(t, x)λi(t, x)φ(x)dx − α1

∫ 1

0
zi(t, x)φ(x)dx (10.29a)

for all φ ∈ H1(Ω) with final condition

ηi(Ti+1) =

{
−α2zi(T), if i = N − 1,
δλi+1, else

in L2(0, 1). (10.29b)

Equation (10.16c) corresponds to (recall that we have two control components u0, u1 and thus two
equations)

δu0,i − ηi(., 0) = d̄0,i, in L2(Ti, Ti+1) (10.30a)

δu1,i − ηi(., 1) = d̄1,i, in L2(Ti, Ti+1). (10.30b)

155

Finally, the linear-quadratic optimal control problem (10.17) takes the form

Minimize
α1

2

∫ Ti+1

Ti

∫ 1

0
z2
i (t, x)dxdt +

1
2

∫ Ti+1

Ti

δu
2
0,i(t) + δu

2
1,i(t)dt

+
∫ Ti+1

Ti

d̄0,i(t)δu0,i(t) + d̄1,i(t)δu1,i(t)dt

+
∫ Ti+1

Ti

∫ 1

0
zi(t, x)(zi)x(t, x)λi(t, x)dxdt

+
∫ 1

0
δλi+1(x)zi(Ti+1, x)dx (10.31a)

subject to

〈 ∂

∂t
zi(t), φ〉(H1)′,H1 + σ1zi(t, 1)φ(1) + σ0zi(t, 0)φ(0)

+
∫ 1

0
ν(zi)x(t, x)φx(x) + zi(t, x)(yi)x(t, x)φ(x) + yi(t, x)(zi)x(t, x)φ(x)dx

− δu0,i(t)φ(0) − δu1,i(t)φ(1) = 0 ∀φ ∈ H1(Ω) (10.31b)

and the initial condition

zi(Ti) =

{
0 if i = 0,
δyi, else,

in L2(0, 1). (10.31c)

For i = N − 1, the term
∫ 1
0 δλi+1(x)zi(Ti+1, x)dx in (10.31a) has to be replaced by α2

2

∫ 1
0 z2

i (T, x)dx.

10.6 Application to the Dirichlet Control of the Two-Dimensional Heat
Equation

Our second example is the linear quadratic optimal control problem

min
1
2

∫ T

0
‖u2(t, ·)‖2

L2(Γ)dt +
α1

2

∫ T

0
‖(y(t, ·) − z1(t, ·)‖2

L2(Ω)dt +
α2

2
‖y(T, ·) − z2‖2

−1,

subject to
∂
∂ty(t, x) − ν∆y(t, x) = f(t, x), t ∈ (0, T), x ∈ Ω,

y(t, x) = u(t, x) t ∈ (0, T), x ∈ Γ0,

y(t, x) = 0 t ∈ (0, T), x ∈ ∂Ω \ Γ0,

y(0, x) = y0(x) x ∈ Ω.

(10.32)

Here Ω = (0, 1)2 and ‖ · ‖−1 denotes the norm in H−1(Ω), which defined by ‖y‖−1 = ‖∇φ‖L2 , where
φ ∈ H1

0 (Ω) is the solution of
∫
Ω ∇φ · ∇θ = 〈y, θ〉H−1×H1

0
for all θ ∈ H1

0 (Ω). The objective function with
α1 = 0 is an approximate controllability problem studied in [52], [94, § 2]. For u ∈ U = L2(0, T ;L2(∂Ω))
the problem (10.32) has a unique solution y in L2(0, T ;L2(Ω)) ∩ C0([0, T]; (H1(Ω))∗) with yt in

156

L2(0, T ; (H2(Ω))∗) (see [94, § 2]). Our spatial discretization of the problem follows [52], [94, § 2.6], who
use linear finite elements on a uniform triangulation which is constructed by dividing Ω into n2x squares of
equal size and then cutting each square from the lower left to the top right into two triangles. In our
computations nx = 16. We use the backward Euler in time using nt = kNt = 32 time steps.

Our problem data are those of the second test problem in [94, p.182]. In particular, Γ0 = (0, 1) × {0},
ν = 1/(2π2), z1(t, x1, x2) = min{x1, x2, 1 − x1, 1 − x2}, z2(x1, x2) = min{x1, x2, 1 − x1, 1 − x2},
f = 0, and y0 = 0. We consider two cases. In case 1 we set α1 = α2 = 105 and in case 2 we set
α1 = 0, α2 = 105.

Since, this example problem is linear quadratic, the operator G(x) is afffine linear,G(x) = Ax − bWe
solve Ax = b using GMRES with left preconditioning. The preconditioned GMRES iteration was
truncated when the residual norm was less than 10−7. The GMRES iterations with forward–backward GS
preconditioning are documented in Figure 10.4. For case 1 we observe at most a slight increase in GMRES
iterations, when the number of time–subdomains is increased. For case 2, which is the problem in which
only end–time observations are present, and which is significantly more ill–conditioned, the number of
GMRES iterations seems to increase roughly linearly with the number of time–subdomains. The total
number of preconditioned GMRES iterations, however, still remains reasonably small.

Figure 10.4. Convergence history of GMRES (Example 2, Nt =
4, 8, 16)

Case 1
forward-backward Gauss-Seidel prec.

0 1 2 3 4 5 6 7 8
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

4

re
si

du
al

 n
or

m

iteration

8 16

Case 2
forward-backward Gauss-Seidel prec.

0 5 10 15 20
10

−10

10
−5

10
0

10
5

4

re
si

du
al

 n
or

m

iteration

8
16

10.7 Conclusions

We have discussed the application of a time-domain decomposition approach for the solution of parabolic
PDE constrained optimal control problems. The time-domain decomposition approach is motivated by the
need to cope with the large storage requirements arising out of the strong coupling in time of states,
adjoints and controls.

The time decomposition of the original problem leads to a large scale discrete–time optimal control
(DTOC) problem in Hilbert space. We have discussed the solution of these DTOCs using a
Lagrange-Newton-SQP method. Near a solution of the problem this is equivalent to applying Newton’s

157

method to the first order optimality conditions. The tasks arising in the implementation of the
Lagrange-Newton-SQP for the DTOC are related to the solution of the state, linearized state and adjoint
equations restricted to time subintervals. The linear system that has to be solved in each iteration of the
Lagrange-Newton-SQP method has a block structure, which motivates the application of block
Gauss–Seidel (GS) methods for its solution. The forward backward GS method is particularly effective as a
preconditioner.

Parallelization of the time-domain decomposition approach is currently under investigation. In particular,
the time-domain decomposition approach will be used as an additional layer of parallelization, in addition
to existing parallelization of PDE solvers or of the time-subdomain optimal control problems. Potential
savings may also result from the need to handle only smaller time subinterval problem. Depending on
problem size, this may allow one to reduce the use slow memory and thus result in significant savings of
computing time.

158

Chapter 11

Adjoint-based a posteriori error analysis

11.1 Introduction

For many scientific calculations, a numerical solution of a partial differential equation (PDE) is computed
to evaluate the actual quantity of interest, a functional of this solution. This quantity of interest could be a
weighted average of the solution or the flux of the solution through a boundary. In fluid dynamics the lift
and drag of an object are examples functionals of interest. Classical a posteriori error estimation focused
on estimating the error in a global norm, see [6, 201]. These estimates in global error may not be of much
help when we are only interested in the output functional. Moreover these global norms might not have any
physical meaning. Adjoint based error estimation techniques for functionals of interest have been
developed by a number of people to address these concerns. For a good review of the history and recent
developments see [29, 90]. Adjoint based error estimates can be derived for a number of different
discretizations of the problem. They have also been used in a couple of ways. These error estimates can be
used as a correction to the functional increasing its accuracy, e.g. [89]. The other main use for the adjoint
based error estimation is for mesh adaption. Here the goal is to obtain a quasi optimal mesh to solve the
PDE on and evaluate the functional of interest. For examples of hp-adaptive schemes for discontinuous
Galerkin methods see [122, 105]. Also interesting is the use of the error estimation framework for
discontinuous Galerkin in a higher order Godunov finite volume setting, e.g. [21].

Here we present an adjoint based a posteriori error analysis for Laplace’s equation to get the flavor of this
approach. We are going to follow [122] where applicable and simplify matters if possible. We will generate
our formulation for the Local Discontinuous Galerkin (LDG) method [62] for solving Laplace’s equation.
Using this error estimate, different refinement strategies are explored for both h- and p-refinement. Using
heuristics described in the paper, we obtain exponential convergence in a solution weighted average
functional of a singular solution to Laplace’s equation on an L-shaped domain.

Using the ideas learned for the steady state problems presented here, our future work will focus on error
estimation in the time-domain where the ultimate goal is to develop error estimates and mesh adaption for
transient optimal control problems. The idea would be to use the adjoint solution that is already being
computed for optimization and for error estimation. However, error estimates in Galerkin schemes need the
adjoint to be computed on a different mesh due to a technical detail called Galerkin orthogonality. This is
unfortunate because one would like to compute the adjoint solution on the same mesh as the primal
solution. Other, non-Galerkin discretizations such as finite-volume and finite-difference methods, do not

159

have this problem. One idea to overcome the Galerkin orthogonality is to use reconstructed solutions
similar to those used in high-order finite-volume methods [211] and this is an interesting area for future
research.

11.2 Formulation: An Example from Linear Algebra

We will first develop a goal-orientated a posteriori error estimate for linear systems as in [89]. This same
framework will be applied later in the paper to partial differential equation. We are going to explore the
linear algebra framework first to help build intuition for adjoint-based error estimates.

Let A ∈ R
m×n be a matrix. Let g ∈ R

n and f ∈ R
m be given vectors. We now define the primal problem

as
Determine gT u where u ∈ R

n such that Au = f . (11.1)

Note that the goal of the primal problem is to compute the functional of interest gT u not just to compute u.
For example, we could be interested in just the ith component of u. In this case g would be the vector with
all components equal to zero except the ith which would be one. We will define the dual problem as

Determine vT f where v ∈ R
m such that AT v = g. (11.2)

With these problem definitions we have the primal-dual equivalence

vT f = vT (Au) = (AT v)T u = gT u.

Assume that ũ is an approximate solution to the primal linear system in (11.1) andṽ is an approximation
to the dual linear system in (11.2). An equation for the error in the primal functional of interest is given as

gT u − gT ũ = gT (u − ũ) by the distributive property of vectors

= vT A(u − ũ) by the transpose of (11.2)

= (v − ṽ + ṽ)T A(u − ũ) by substituting v = v + ṽ − ṽ

= ṽT A(u − ũ) + (v − ṽ)T A(u − ũ) by the distributive property of vectors

= ṽT (Au − Aũ) + (v − ṽ)T A(u − ũ) by the distributive property of matrices

= ṽT (f − Aũ) + (v − ṽ)T A(u − ũ) by (11.1). (11.3)

The first term on the right-hand-side of (11.3) can be computed. However, the second term cannot be
computed because it involves v, the exact solution of the dual problem (11.2). If bounds of nu −ũ,
nv − ṽ and nA exist then Cauchy’s inequality can be used to derive a bound of the error in the functional
of interest. If we are only interested in an estimate of the error and we assume that our approximate dual
solution ṽ is close enough to v then

gT u − gT ũ ≈ ṽT (f − Aũ),

can be a reasonable approximation to the error in the functional of interest. Not using Cauchy’s inequality
provides a potentially sharper approximation of error by giving up the requirement that the estimate bounds
the error. In this paper we will follow the same approach to estimating the error in the numerical
approximation of output functionals, where the quantity of interest is a functional of a partial differential
equation solution.

160

11.3 Formulation: An Example PDE

Let Ω be a bounded convex polygonal subset of R
d where d is the dimension of the problem. Let (·, ·)Ω

denote the inner product in L2(Ω) and (·, ·)∂Ω denote the inner product in L2(∂Ω). Let f, g ∈ L2(Ω) and
e, h ∈ T (∂Ω). The space T (∂Ω) corresponds to all of the functions that are the trace of H2(Ω). We
consider the following primal problem

Determine J(u) = (g, u)Ω + (h,
∂u

∂n
)∂Ω (11.4a)

where u ∈ H2(Ω) is a weak solution of
∆u = f in Ω (11.4b)

u = e on ∂Ω. (11.4c)

Here J(u) is the functional of interest that consists of a weighted average of the solution on Ω and a
weighted average of the normal derivative of the solution along the boundary. The dual problem
formulation is

Determine l(v) = (v, f)Ω + (
∂v

∂n
, e)∂Ω (11.5a)

where v ∈ H2(Ω) is a weak solution of
∆v = g in Ω (11.5b)

v = h on ∂Ω. (11.5c)

One thing to note is that Poisson’s equation with Dirichlet boundary conditions is self-adjoint. In other
words, the adjoint problem is also Poisson’s equation with Dirichlet boundary conditions. We will show
how to formulate this adjoint problem in the next section.

11.4 Continuous Adjoint Formulation

Suppose that we have the following general PDE primal problem

Determine J(u) = (g, u)Ω + (h,Cu)∂Ω (11.6a)

where u ∈ V is a weak solution of

Lu = f in Ω (11.6b)

Bu = e on ∂Ω, (11.6c)

where L is a linear PDE operator, B is a boundary operator, C is an algebraic or differential operator, and
V is an appropriate Hilbert space for the problem. We assume that f , g, e and h are given functions in the
appropriate spaces so that the primal and dual problems have unique solutions. The general dual problem is

Determine l(v) = (v, f)Ω + (C∗v, e)∂Ω

where v ∈ V is a weak solution of

L∗v = g in Ω
B∗v = h on ∂Ω,

161

where L∗ is the linear PDE operator adjoint to L, B∗ is a boundary operator and C∗ is an algebraic or
differential operator. The primal and dual problems are related by the primal-dual equivalence

l(v) = (v, f)Ω + (C∗v, e)∂Ω

= (v, Lu)Ω + (C∗v,Bu)∂Ω

= (L∗v, u)Ω + (B∗v,Cu)∂Ω

= (g, u)Ω + (h,Cu)∂Ω

= J(u).

(11.8)

To derive the adjoint formulation given L, B and C we find L∗, B∗ and C∗ such that the primal dual
equivalence (11.8) is satisfied. In [88] the restrictions on J , L, B, and C for there to exist an adjoint
formulation of (11.6) are given. They also calculate adjoint equations for inviscid and viscous compressible
flow.

We now derive the adjoint equation for our model problem (11.4). We need the following identity to hold
for all w, z ∈ V

(w,∆z)Ω + (C∗w, z)∂Ω = (L∗w, z)Ω + (B∗w,
∂z

∂n
). (11.9)

For the model problem, integration by parts gives ∀v, z ∈ V

(w,∆z)Ω = (∆w, z)Ω + (w,
∂z

∂n
)∂Ω − (

∂w

∂n
, z)∂Ω.

If we let L∗w = ∆w, B∗w = w and C∗w = ∂w
∂n then (11.9) holds. So, the adjoint formulation of the

model problem is (11.5).

11.5 Local Discontinuous Galerkin Discretization

Although the error estimate framework is independent of the discretization used to approximate the PDE in
(11.4), we will first specify the discretization to make the error estimation more concrete. Let Th = K be a
triangulation of Ω. Here h is the characteristic size of the elements. Let Γh be the union of all edges of the
elements of Th. Let ph = {pK}K∈Th

be a degree vector where for each K ∈ Th the polynomial-order of
the element is given by pK ≥ 1. Define Sph(Th) := {u ∈ L2(Ω): u|K ∈ PpK

(K),∀K ∈ Th} where
PpK

(K) is the space of all polynomials on K of degree at most pK . Let Vh := Sp(Th) and
Σh := Sp(Th)d. Finally, the local derivative is defined as ∇hu|K := ∇u ∀K ∈ Th.

The local discontinuous Galerkin (LDG) [62] bilinear form for the Laplace operator is

Bdg(uh, w) =
∫

Ω
∇h · ∇huhw dx −

∑
K∈Th

∫
∂K

(ûK − uh)∇hw · nK ds

−
∑

K∈Th

∫
∂K

(∇huh − σ̂K) · nKw ds,

where nK is the outward pointing normal to element K. LetK1 and K2 be two elements with a common
edge where n1 and n2 are outward pointing normals for the elements then for q ∈ Vh with qi := q|∂Ki

and

162

φ ∈ Σh with φi := φ|∂Ki
we have

{{q}} =
1
2
(q1 + q2), [[q]] = q1n1 + q2n2,

{{φ}} =
1
2
(φ1 + φ2), [[φ]] = φ1 · n1 + φ2 · n2 .

Also σh is defined by∫
Ω

σh · τ dx = −
∫

Ω
uh∇ · τ dx +

∑
K∈Th

∫
∂K

ûKnK · τ ds ∀τ ∈ Σh.

The numerical fluxes ûK and σ̂K are defined as

ûK = {{uh}} − β · [[uh]] on Γh \ ∂Ω, ûK = 0 on ∂Ω,

σ̂K = {{σh}} + β[[σh]] − α([[uh]]) on Γh \ ∂Ω, σ̂K = σh − α(uhn) on ∂Ω.

Here β ∈ R
d and α is on the order of p2/h where h is the characteristic size of the mesh and p is the

maximum polynomial-order on the mesh.

For error estimation, we require both state and adjoint consistency. State consistent means that if u is a
solution to the primal problem (11.4) then

Bdg(u, z) = l(z) ∀z ∈ H2(Th). (11.12)

Adjoint consistent means that if v is a solution to the dual problem (11.5) then

Bdg(w, v) = J(w) ∀w ∈ H2(Th). (11.13)

It turns out that LDG is both state and adjoint consistent see [12] for details as well as other numerical
fluxes that are state and adjoint consistent.

11.6 Computation of Error Estimates

Following a similar path as [122], we define global and local error estimates to the error in the functional
J(u) − J(uh) where uh is the solution of (11.14b). We have the following discrete primal problem

Determine J(uh) = (g, uh)Ω + (h,
∂uh

∂n
)∂Ω (11.14a)

where uh ∈ Vh such that

Bdg(uh, w) = l(w) ∀w ∈ Vh. (11.14b)

We also have the discrete dual problem

Determine l(vH) = (vH , f)Ω + (C∗vH , e)∂Ω (11.15a)

where vH ∈ VH such that

Bdg(vH , z) = J(z) ∀z ∈ VH , (11.15b)

163

where VH = SpH (TH). Here pH and TH are chosen such that VH is not a subspace of Vh. Combining
(11.12) and (11.14) we have Galerkin orthogonality

Bdg(u − uh, w) = 0 ∀w ∈ Vh. (11.16)

Using (11.12), (11.13), (11.14) and (11.15a) we have the following estimate of the error in the functional of
interest

J(u) − J(uh) = Bdg(u, v) − Bdg(uh, v)
= Bdg(u, vH) − Bdg(uh, vH) + Bdg(u − uh, v − vH)
= l(vH) − Bdg(uh, vH) + Bdg(u − uh, v − vH)

≈ l(vH) − Bdg(uh, vH) =
∑

K∈Th

ηK ,

(11.17)

where

ηK =
∫

K
rh,pvH dx +

∫
∂K\∂Ω

µh,p∇hvH · nK ds

+
∫

∂K
νh,p · nKvH ds +

∫
∂K∩∂Ω

ξh,p∇hvH · nK ds.

Here rh,p|K = (f − ∆uh)|K is the interior residual, ξh,p|∂K∩∂Ω = (g − uh)|∂K∩∂Ω is the boundary
residual, µh,p|∂K\∂Ω = (ûK − uh)|∂K\∂Ω is the flux residual, and νh,p|∂K\∂Ω = (∇uh − σ̂K)|∂K\∂Ω is
the gradient flux residual. Also, ηK is the local error estimate on element K .

Note that if VH ⊆ Vh then from Galerkin orthogonality we would always have
∑

K∈Th
ηK = 0, which

would not be of much use as an error estimate. Another consideration is that we are going to choose to
adapt an element K based on the size of |ηK | which will disregard any cancellation in the local error
estimates that exists in

∑
K∈Th

ηK .

11.6.1 hp-adaption

Local error estimates can be used to decide which elements are responsible for the largest errors. There are
two options for improving the solution on a given element. We can increase the polynomial order of the
element — called p-refinement. On the other hand we can divide the element into multiple elements —
called h-refinement. If the solution is sufficiently smooth, p-refinement will be most beneficial. The idea is
to start with a coarse mesh and use multiple levels of h- and p-refinement to obtain a quasi-optimal mesh to
solve (11.14).

We have implemented the following mesh adaptation algorithm. For the ith level of refinement we are
given a mesh Thi

and order vector phi
. We then solve the primal problem (11.14b) obtaining uhi

∈ Vhi
and

create a new order vector, pHi = phi
+ a, where a is a positive integer added to each component of phi

to
get pHi to use in the adjoint solve. We let THi = Thi

and solve the adjoint problem (11.15b) in the space
VHi obtaining vHi . We then project uhi

in VHi to calculate the residual RHi . To get the error indicator on
element K ∈ Thi

and we compute ηK = (RHi , vHi)K . Next, one of two refinement strategies (see below)
are used to mark the elements requiring refining where a smoothness indicator is used to decide between h
and p refinement. If the solution on element K is not smooth, h refinement is chosen and elementK is split
into four elements. If the solution on K is smooth, p refinement is selected and polynomial-order is
increased on element K by one. After this has been performed for each element that marked for
refinement, a new mesh Thi+1 and order vector phi+1 are available and the processes can be repeated.

164

11.6.2 Refinement Strategies

Global TOL Let Ni be the total number of elements in Ti. For a given TOL we select for refinement the
elements whose absolute value of the error indicator, |ηK |, is greater than TOL/Ni. We stop refining when∑

K∈Th
ηK < TOL. For this scheme is it also possible to use coarsening. With a given coarsening fraction,

cf , we select for coarsening the elements whose absolute value of the error indicator, |ηK |, is such that
|ηK | < cf (TOL/Ni). Currently we only coarsen in p by decreasing the polynomial order on the elements
that are selected for coarsening.

Top Fraction For this refinement strategy we are given a refinement percentage, rp. For each refinement
level we refine rp as the percentage of the elements with the greatest error indicator. We do this for a given
number of refinements. For this scheme it is also possible to use coarsening. For each refinement level we
coarsen cp percent of the elements with the smallest error indicators. Currently we only coarsen in p by
decreasing the polynomial order on the elements that are selected for coarsening.

11.6.3 Smoothness Indicator

To calculate the smoothness of the appropriated solution we do something similar to what Mavriplis [158]
proposed. For a given element K we expand our solution in the Proriol–Koornwinder–Dubiner–Owens
[138] orthonormal basis. We assume ai ∼ C exp −σi where ai is the magnitude of the expansion
coefficients for the polynomials of order i. We find C and σ by solving a least squares problem. If σ > 1
we say the solution is smooth in that element and otherwise we say it is not smooth. One thing to note
about the smoothness indicator is that it works well when p is greater than 4 or so.

11.7 Implementation

We have implemented adjoint-based error estimates in Sandia’s modal discontinuous Galerkin framework
called SAGE [65] and a nonconforming nodal discontinuous Galerkin finite element framework called
SLEDGE [70, 115]. Results have been obtained and compared using both implementations for
p-adaptation and (as expected the results are identical). For brevity, we only report results using SLEDGE
here, since the nonconforming capability of SLEDGE allows easy h and p refinement. SLEDGE uses nodal
elements where the N = 1

2(p + 1)(p + 2) nodes {xi} for polynomial interpolation of order p are given in
[114]. Note that the nodes along the edge are exactly the Legendre-Gauss-Lobatto points. On element K,
we use the following representation of the solution

qK
N (x) =

N∑
i=0

uK
i Li(x),

where Li(xj) = δi,j are the Lagrange polynomials for the nodal set {xi}. This error estimate capability,
developed in both SAGE and SLEDGE, are considered preliminary prototyping for Sandia production
codes, such as codes in the SIERRA framework.

165

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Figure 11.1. Element meshes for the average functional test and the
Gaussian weighted average functional test.

11.8 Numerical Results

11.8.1 Average Functional

In this example, there were a total of four h-refinement levels. At each level the next grid is computed by
splitting each element into four elements. We are solving (11.14) on Ω = [−1, 1] × [−1, 1] with f set so
that u = sin(πx) sin(πy). For our computations the functional of interest is J(w) =

∫
Ω ωw dx where

ω(x, y) = 1. The adjoint and fine residual error estimate are calculated at a different order, +a, on the
same Th that is used for the coarse mesh. The meshes this test uses are given in Figure 11.1. A contour plot
of the primal and dual solutions can be found in Figure 11.2. We have presented the numerical results in
Table 11.1. Note that the error in the functional does not decrease when going from even to odd orders. For
this reason, to obtain reliable error estimates one needs to take the fine mesh two-orders greater than the
coarse mesh. We also note that we see that the convergence rate is order p + 1 when we compare the L2

error to the square root of the degrees of freedom, as expected [53].

11.8.2 Gaussian Weighted Average Functional

This model problem is the same as the average functional test except for the functional J(w) =
∫
Ω ωw dx

where ω(x, y) = exp(−(x + 0.5)2 − (y + 0.5)2). The meshes used for each refinement level are shown in
Figure 11.1 and contour plots of the solutions of the primal and dual problems are in Figure 11.3. The
detailed converenge and error estimates are documented in Table 11.2. Looking at the efficiency index, we
are still doing a fairly good job of estimating the error. Things are not quite as good as in the average test
because this dual problem is more difficult to solve accurately due to the higher spatial gradients.

11.8.3 Boundary Flux Functional

We are solving (11.14) on Ω = [−1, 1] × [−1, 1] \ [−0.75,−0.25] × [−0.75,−0.25] with f set so that
u = sin(πx) sin(πy). In this test our functional of interest is

J(w) =
∫

∂Ω
κ

∂w

∂n
ds

166

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.8909
0.7971
0.7033
0.6096
0.5158
0.4221
0.3283
0.2346
0.1408
0.0471

-0.0467
-0.1404
-0.2342
-0.3279
-0.4217
-0.5154
-0.6092
-0.7029
-0.7967
-0.8904

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0140
-0.0280
-0.0420
-0.0561
-0.0701
-0.0841
-0.0981
-0.1122
-0.1262
-0.1402
-0.1542
-0.1682
-0.1823
-0.1963
-0.2103
-0.2243
-0.2384
-0.2524
-0.2664
-0.2804

(a) (b)

Figure 11.2. Contour plots of the primal and dual solutions for the
average functional test case on the initial mesh. (a) Primal solution for
p = 5 and u = sin(πx) sin(πy). (b) Dual solution p = 7 and J(w) =∫
Ω w dx

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.8909
0.7971
0.7033
0.6096
0.5158
0.4221
0.3283
0.2346
0.1408
0.0471

-0.0467
-0.1404
-0.2342
-0.3279
-0.4217
-0.5154
-0.6092
-0.7029
-0.7967
-0.8904

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0080
-0.0161
-0.0241
-0.0321
-0.0402
-0.0482
-0.0563
-0.0643
-0.0723
-0.0804
-0.0884
-0.0965
-0.1045
-0.1125
-0.1206
-0.1286
-0.1367
-0.1447
-0.1527
-0.1608

(a) (b)

Figure 11.3. Contour plots of the primal and dual solutions for the
Gaussian weighted average functional test case on the initial mesh. (a)
Primal solution for p = 5 and u = sin(πx) sin(πy). (b) Dual solution
for p = 7 and J(w) =

∫
Ω exp

(
−(x + 1

2)2 − (y + 1
2)2
)
w dx.

167

Table 11.1. The error, |J(u) − J(uh)|, error estimates, |
∑

K∈Th
ηK |,

and the efficiency index θ = (
∑

K∈Th
ηK)/J(u − uh) for the average

functional test where the primal solution is computed with interpolation
order p and the adjoint solution is computed with interpolation order p +
a. N is the number of elements using the meshes shown in Figure 11.1.

a = 1 a = 2
p N |J(u) − J(uh)| | P

K∈Th
ηK | θ | P

K∈Th
ηK | θ L2 error

1 18 1.17385e+00 1.31386e+00 1.11927e+00 1.19681e+00 1.01956e+00 5.59881e-01

72 2.24101e-01 2.26449e-01 1.01048e+00 2.25277e-01 1.00525e+00 1.52940e-01

288 5.63805e-02 5.65033e-02 1.00218e+00 5.64515e-02 1.00126e+00 4.32824e-02

1152 1.41491e-02 1.41565e-02 1.00052e+00 1.41535e-02 1.00031e+00 1.12708e-02

2 18 1.40010e-01 1.17053e-01 8.36032e-01 1.41490e-01 1.01057e+00 8.48875e-02

72 2.34857e-03 1.17197e-03 4.99012e-01 2.34596e-03 9.98885e-01 1.16150e-02

288 1.22798e-04 5.17498e-05 4.21422e-01 1.22735e-04 9.99489e-01 1.69646e-03

1152 7.40629e-06 3.00180e-06 4.05304e-01 7.40524e-06 9.99859e-01 2.23675e-04

3 18 2.29571e-02 2.44371e-02 1.06447e+00 2.36433e-02 1.02989e+00 2.62144e-02

72 1.17661e-03 1.17399e-03 9.97775e-01 1.18422e-03 1.00647e+00 1.38084e-03

288 7.10483e-05 7.09855e-05 9.99116e-01 7.11627e-05 1.00161e+00 8.95763e-05

1152 4.40449e-06 4.40344e-06 9.99762e-01 4.40626e-06 1.00040e+00 5.56033e-06

4 18 1.47994e-03 7.93746e-04 5.36336e-01 1.49315e-03 1.00892e+00 1.91294e-03

72 2.61811e-06 1.02310e-05 3.90777e+00 2.66171e-06 1.01665e+00 1.57893e-04

288 6.28102e-08 1.77121e-07 2.81994e+00 6.29982e-08 1.00300e+00 5.01434e-06

1152 1.04785e-09 2.81794e-09 2.68927e+00 1.04867e-09 1.00072e+00 1.56622e-07

5 18 6.86194e-04 6.99401e-04 1.01925e+00 6.91325e-04 1.00748e+00 1.07330e-03

72 7.61285e-06 7.56925e-06 9.94272e-01 7.62702e-06 1.00186e+00 1.36188e-05

288 1.14311e-07 1.14123e-07 9.98354e-01 1.14364e-07 1.00047e+00 2.30722e-07

1152 1.77009e-09 1.76931e-09 9.99557e-01 1.77002e-09 9.99950e-01 3.68012e-09

168

Table 11.2. The error, |J(u) − J(uh)|, error estimates, |
∑

K∈Th
ηK |,

and the efficiency index θ = (
∑

K∈Th
ηK)/J(u − uh) for the Gaussian

weighted average functional test where the primal solution is computed
with interpolation order p and the adjoint solution is computed with in-
terpolation order p + a. N is the number of elements using the meshes
shown in Figure 11.1.

a = 1 a = 2
p N |J(u) − J(uh)| | P

K∈Th
ηK | θ | P

K∈Th
ηK | θ L2 error

1 18 4.33713e-01 5.30148e-01 1.22235e+00 4.77241e-01 1.10036e+00 5.59881e-01

72 6.76363e-02 7.93109e-02 1.17261e+00 7.75451e-02 1.14650e+00 1.52940e-01

288 1.51120e-02 1.79162e-02 1.18556e+00 1.78124e-02 1.17869e+00 4.32824e-02

1152 3.63399e-03 4.33925e-03 1.19407e+00 4.33278e-03 1.19229e+00 1.12708e-02

2 18 6.64777e-02 5.46756e-02 8.22466e-01 6.73927e-02 1.01376e+00 8.48875e-02

72 2.44187e-03 1.74262e-03 7.13640e-01 2.28208e-03 9.34561e-01 1.16150e-02

288 1.45373e-04 1.03109e-04 7.09275e-01 1.34235e-04 9.23383e-01 1.69646e-03

1152 9.07516e-06 6.45938e-06 7.11765e-01 8.36297e-06 9.21523e-01 2.23675e-04

3 18 1.19640e-02 1.27152e-02 1.06279e+00 1.23587e-02 1.03300e+00 2.62144e-02

72 5.20624e-04 5.39692e-04 1.03662e+00 5.40232e-04 1.03766e+00 1.38084e-03

288 2.99345e-05 3.11268e-05 1.03983e+00 3.11375e-05 1.04019e+00 8.95763e-05

1152 1.82849e-06 1.90360e-06 1.04107e+00 1.90376e-06 1.04116e+00 5.56033e-06

4 18 7.04011e-04 3.56134e-04 5.05864e-01 7.01378e-04 9.96260e-01 1.91294e-03

72 3.61131e-06 5.39076e-07 1.49274e-01 3.03010e-06 8.39059e-01 1.57893e-04

288 5.12753e-08 1.07044e-08 2.08763e-01 4.15313e-08 8.09967e-01 5.01434e-06

1152 7.96075e-10 1.61912e-10 2.03387e-01 6.41207e-10 8.05454e-01 1.56622e-07

5 18 3.38714e-04 3.45245e-04 1.01928e+00 3.42217e-04 1.01034e+00 1.07330e-03

72 3.53008e-06 3.56917e-06 1.01108e+00 3.58349e-06 1.01513e+00 1.36188e-05

288 5.14128e-08 5.22356e-08 1.01600e+00 5.22964e-08 1.01719e+00 2.30722e-07

1152 7.89335e-10 8.03144e-10 1.01750e+00 8.03219e-10 1.01767e+00 3.68012e-09

169

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

(a) (b) (c) (d)

Figure 11.4. Meshes for the boundary flux functional test where all
of the elements are refined between each level. (a) starting mesh, (b)
refinement level 1, (c) refinement level 2, (d) refinement level 3.

Table 11.3. The error, |J(u) − J(uh)|, error estimates, |
∑

K∈Th
ηK |,

and the efficiency index θ = (
∑

K∈Th
ηK)/J(u − uh) for the boundary

flux functional test where the primal solution is computed with interpola-
tion order p and the adjoint solution is computed with interpolation order
p + a. N is the number of elements in the simulation.

a = 2
p N |J(u) − J(uh)| | P

K∈Th
ηK | θ L2 error

4 46 2.00761e-02 1.64589e-02 8.19826e-01 2.51347e-04

184 1.03799e-03 8.39250e-04 8.08533e-01 8.51998e-06

736 5.95473e-05 4.71253e-05 7.91393e-01 2.67050e-07

2944 3.49455e-06 2.72934e-06 7.81027e-01 8.32271e-09

where κ(x, y) = 1 on the interior hole boundary, see Figure 11.4, and κ(x, y) = 0 elsewhere. The meshes
this test uses are given in Figure 11.4 for the global refinement all elements are refined at each stage. A
contour plot of the primal and dual solution can be found in Figure 11.5. We have presented the numerical
results in Table 11.3. The efficiency index is around 0.8 for all of these cases which is likely due to
inaccuracy of the dual solution which likely requires a finer h-mesh. In some situations it might be
necessary to adapt both the dual and primal mesh to get accurate error estimates.

11.8.4 L-Shaped Domain

In this model problem, (11.14) is solved on an L-shaped domain as shown in Figure 11.6. The boundary
conditions are set so that the exact solution is given, in polar coordinates, as u(r, θ) = r2/3 sin(2πθ/3).
This problem has been studied by many researchers in the context of error estimation and mesh adaptation,
see, e.g. [79]. In our simulations shown in Figure 11.6, we have used the global TOL refinement strategy
with TOL = 10−7 and cf = 0.1. This produces a final mesh that has h-adaption near the
derivative-singularity at r = 0, and p-adaption elsewhere. Figure 11.7 shows the error in the functional,
J(w) =

∫
Ω uw dx, as a function of the square root of the degrees of freedom. We see that for just

h-adaption the best choice is p = 1 and higher-order interpolation does not help and can actually hurt the
performance. However, for hp-refinement strategies exponential convergence in the functional is observed.

170

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.8911
0.7969
0.7026
0.6084
0.5142
0.4200
0.3258
0.2316
0.1374
0.0432

-0.0510
-0.1452
-0.2394
-0.3336
-0.4279
-0.5221
-0.6163
-0.7105
-0.8047
-0.8989

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.9588
0.9107
0.8625
0.8144
0.7663
0.7182
0.6701
0.6220
0.5739
0.5258
0.4777
0.4296
0.3815
0.3334
0.2853
0.2372
0.1891
0.1410
0.0928
0.0447

(a) (b)

Figure 11.5. Contour plots of the primal and dual solutions for the
boundary flux functional test case on the initial mesh. (a) Primal solution
for p = 4 and u = sin(πx) sin(πy). (b) Dual solution p = 6 and
J(w) =

∫
∂Ω κ∂w

∂n ds where κ(x, y) = 1 on the interior hole boundary.

11.9 Conclusion

We have implemented an adjoint based error estimator for the local discontinuous Galerkin discretization
of Poisson’s problem. Here the error is measured in some functional of the computed solution. This
functional can be a weighted integral of the solution in the domain or a weighted integral of the flux of the
solution across a boundary. A smoothness indicator has also been written that is based on the convergence
of the coefficients of the projection of the solution on the orthonormal basis for a triangle. Using the error
estimates and the smoothness indicator we have obtained exponential decrease in the error of a weighted
integral of a singular solution of Laplace’s equation on an L-shaped domain.

For future work we would like to apply adjoint based error estimates to time dependent problems,
non-linear problems, other discretizations and then to real applications such as the compressible fluid flow
problems. This error estimate work developed here is also considered preliminary prototyping for Sandia
production codes, such as codes in the SIERRA framework.

171

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203
1.142
1.081
1.019
0.958
0.896
0.835
0.774
0.712
0.651
0.590
0.528
0.467
0.405
0.344
0.283
0.221
0.160
0.099
0.037

x
y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028
-0.0072
-0.0117
-0.0162
-0.0207
-0.0252
-0.0297
-0.0342
-0.0387
-0.0432
-0.0477
-0.0522
-0.0567
-0.0612
-0.0657
-0.0702
-0.0747
-0.0791
-0.0836
-0.0881

(a) (b)

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10
9
8
7
6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06
1.70E-06
1.45E-06
1.20E-06
9.45E-07
6.94E-07
4.43E-07
1.92E-07

-5.90E-08
-3.10E-07
-5.61E-07
-8.12E-07
-1.06E-06
-1.31E-06
-1.57E-06

(c) (d)

Figure 11.6. (a) Contours of the primal solution on the staring mesh
defined in polar coordinates as u(r, θ) = r2/3 sin(2π

3 θ). (b) Contours
of the dual solution for J(w) =

∫
Ω uw dx. (c) The final mesh where

different colors represent the polynomial-order of the element p + 1. We
have used the global TOL refinement strategy with TOL = 10−7 and
cf = 0.1. (d) Here is a contour plot of the error estimate ηK . Most of
the error is concentrated at the corner.

172

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 20 30 40 50 60 70 80 90 100

|J
(u

)-
J(

u h
)|

DOF1/2

hp TOL=10-7

hp TOL=10-7 coarfrac 0.1
h p=1 TOL=10-5

h p=2 TOL=10-5

h p=3 TOL=10-5

hp refper 20
hp refper 20 coarper 10

Figure 11.7. The error in the functional, J(w) =
∫
Ω uw dx as a func-

tion of the square root of the degrees of freedom. We see that for just
h-adaption the best choice is p = 1 and higher order interpolation does
not help — it actually hurts the performance. We also see that for both
refinement strategies we get exponential convergence in the functional of
interest. If we put a straight-line fit through � it has a slope of 2.8.

173

Chapter 12

Continuous versus Discrete Adjoints

In Section 1.1 the relative advantages and disadvantages of continuous and discrete adjoint formulations are
outlined. The preceding Chapter 11 on adjoint-based error estimation used a continuous adjoint approach
to develop a posteriori error estimates for functionals of the solution. A continuous adjoint formulation was
natural in this context, since the theory of a posteriori error estimation formally requires the exact adjoint
solution for a given functional. Obviously, this is not practical, and one typically solves the adjoint problem
either on a finer mesh or using a higher-order reconstruction and both approaches have shown success. In
the case of Galerkin methods (such as finite-elements and discontinuous Galerkin), the direct use of the
discrete adjoint is not possible due to Galerkin orthogonality, although one can use the discrete adjoint
computed on a finer mesh1. The purpose of the current section is to provide a brief comparison of discrete
and continuous adjoint formulations for a simple model problem that illustrates the important issues.

12.1 Formulation

As a prototypical example, consider the transient one-dimensional heat-equation

y,t − (νy,x),x = 0 (12.1a)

in Ω = (t, x) ∈ (0, T] × [0, 1] with initial condition

y(0, x) = − sin
(

π
tan (m(2x − 1))

tan(m)

)
x ∈ [0, 1] (12.1b)

where m = 1.3. We specify Robin boundary conditions

−νy,x + y = 0 at x = 0, t ∈ (0, T] (12.1c)

νy,x + y = u at x = 1, t ∈ (0, T] (12.1d)

where u is the control variable. The objective function is

J(u, y) =
∫ 1

0

(α

2
u2 +

αt

2
u2

,t

)
dt +

β

2

∫ 1

0
(y(x, 1) − y(x, 0))2 dx . (12.2)

1This is what is actually reported in Section 11.8

174

For all the results shown here, ν = 0.01, α = 1 and β = 1000. When using time-regularization αt = 0.1
and otherwise, αt = 0. The optimization problem is to minimize J(φ, u) for all u ∈ U subject to (12.1a)
where U is the space of admissible controls.

Equation (12.1a) is discretized using the (local) discontinuous Galerkin (DG) method (see Section 11.5) in
space with backward Euler time-integration. For consistency, the time integral in (12.2) is also evaluated
using backward Euler and the spatial integral is computed consistent with the DG element representation.

As described in Section 11.5, the LDG method is adjoint consistent meaning that the LDG discretization of
the continuous adjoint is exactly the same as the discrete adjoint of the original LDG discretized state. In
general, Galerkin discretizations can have this correspondence although care must be taking with DG
methods in formulating the numerical fluxes to ensure adjoint consistency. Likewise, we use the adjoint of
backward Euler to integrate the adjoint equation backward in time.

In order to illustrate the differences between discrete and continuous adjoints in this context, we take as our
reference the adjoint consistent LDG method with adjoint backward Euler time-integration and refer to this
as a discrete adjoint (DA) method when both the state and adjoint are computed using the same LDG
discretization and same time-step.

While the discrete adjoint is unique for a given state discretization, there are many ways to construct a
continuous adjoint approximation and we consider two such approaches here. Our code (i.e. SAGE)
implements the adjoint as a discretization of the adjoint PDE. In the case of LDG, the continuous adjoint
and the discrete adjoint are identical as long as the mesh and polynomial-order used for each are the same.
Thus, our first continuous adjoint (CA) method is to force the adjoint solver to use a different
polynomial-order from that used in the state. In the examples shown here, we set the polynomial-order of
the adjoint to be one less than that of the state and this is referred to as the CA(p − 1) method.

A second continuous adjoint formulation is obtained by altering the means by which boundary conditions
are set. In general, there are many ways that boundary conditions can be weakly enforced within DG
methods. One approach (described in Section 11.5) is to replace the numerical fluxes at the boundary by
the prescribed boundary fluxes and this results in the adjoint consistent LDG method. Another approach is
to prescribe the boundary conditions indirectly through the arguments of the numerical fluxes. Doing so for
both the State and Adjoint equations results in a continuous adjoint formulation, i.e., the discretized adjoint
equation is no-longer identical to the adjoint of the discretized state. However, both the discretized state
and adjoint equations are consistent (and spectrally accurate) discretizations of the original PDE’s. We
denote this second approach as the CA(BC) method. Of course, there are numerous other ways that a
continuous adjoint can be constructed including using a different h-mesh, different time-steps, different
time-integration methods, etc.

12.2 Results

All the optimization results discussed here use the Polak-Ribiere variant of the nonlinear conjugate
gradient (nCG) algorithm with a secant-type (function value only) line-search. While this combination
results in a rather simplistic approach to solving optimization problems, it is appropriate, especially in the
presence of inexact gradient information obtained from a continuous adjoint and is a method that has been
used successfully in the past for a number of large-scale, transient optimization problems governed by
strongly nonlinear physics [35, 56, 55, 64, 58].

175

Figure 12.1 shows the convergence history of both J and ||∇J || with and without the time-regularization
term. We focus first on the results without time-regularization (i.e., αt = 0) as shown on the left frame of
Figure 12.1. Both continuous-adjoint methods lead to a saturation of ||∇J || after 6 iterations with only 1-2
orders-of-magnitude decrease. This saturation results from inaccuracies in the gradient due to truncation
error in the continuous adjoint. Once, saturation of J and ||∇J || occurs, further iterations are of
questionable value. For this linear-quadratic optimization problem, the line-search globalization still results
in improved solutions, albeit at a slow convergence rate. However, our experience with large-scale
nonlinear optimization problems indicates that the line-search will eventually fail when the continuous
adjoint based gradient is dominated by truncation error [55]. Conversely, the discrete adjoint delivers 5
decades of decrease in ||∇J || in only 10 iterations of nCG with no indication of saturation.

However, returning to Figure 12.1, we see that all three adjoint-methods lead to very similar values of J
suggesting that, from a practical standpoint, 6 iterations of any of the methods may be sufficient for
engineering purposes. This is verified in Figure 12.2 which shows the final states and controls. The final
state profiles are nearly identical for each method although the state computed using the discrete adjoint is
slightly closer to the target solution. More difference is observed in the control profiles (right frame of
Figure 12.2. While the controls from both continuous-adjoint methods are similar, there is a distinct
difference when compared to the converged result obtained using the discrete adjoint. In particular, u,t is
greater for the continuous adjoint at late times, and there is a sudden change in slope near the end of the
time-interval that is not observed in the discrete adjoint solution. If a larger number of nCG iterations are
used (around 18) with the continuous adjoint methods, they do eventually result in profiles that are similar
to that obtained using the discrete adjoint. This slow convergence is due to the fact that changes in the
control near the end of the time-interval have only a small influence on the final state. Thus, the inaccuracy
of the continuous-adjoint based gradient and the lack of sensitivity of the state to changes in the control at
late-times leads to slow convergence (an possibly no convergence in nonlinear problems).

12.3 Time Regularization

The fact that the control profiles tend to have large temporal gradients under near-optimal conditions,
suggests that the optimization problem is not properly regularized (or equivalently that the space of
admissible controls is too large). For this reason, we now add a small amount of temporal-regularization by
setting αt = 0.1 in (12.2). Figure 12.1(right) compares the nCG convergence histories using
time-regularization with the CA(BC) formulation (denoted as CA(TR)) with the original DA and CA(BC)
results. The addition of time-regularization significantly improves the convergence when using a
continuous adjoint and this behavior is observed in both J and ||∇J ||. Of course, any increase in
regularization will tend to improve convergence, however, setting alpha = 10 with αt = 0 leads to
negligible improvement in convergence when using the continuous adjoint while even a small amount of αt
improves convergence significantly (for both continuous and discrete adjoints).

The state and control using time-regularization are shown in Figure 12.3. The addition of
time-regularization leads to a slightly larger difference between the final state and the target state, although,
qualitatively the agreement is still good. More importantly, the control profile is now much smoother in
time (in fact it is well approximated by a simple quadratic function). The addition of time-regularization
prevents the jump in the control at t = 0 and also prevents the tendency of the control to develop high
gradients near t = 1. In fact, the control profile after only 3 iterations is nearly indistinguishable from the
final converged result. Similar benefits of higher regularization (both in time and space) have also been

176

Iteration

J

||G
ra

d
(J

)|
|

2 4 6 8
20

25

30

35

40

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Iteration

J

||G
ra

d
(J

)|
|

1 2 3 4 5 6 7 8 9
20

25

30

35

40

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Figure 12.1. Convergence of nonlinear CG for Robin boundary control
of the heat equation with and without time-regularization. (Left) with-
out time-regularization: DA, CA(BC), CA(p − 1).
(Right) with time-regularization αt = 0.1: DA, CA(BC),

CA(TR).

x

y

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Time

u

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 12.2. Comparison of states and controls for Robin boundary
control of the heat equation. (Left) State: Target, DA,

CA(BC), CA(p − 1). (Right) Control: DA,
CA(BC), CA(p − 1)

177

x

y

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Time

u

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 12.3. Effect of time-regularization (αt = 0.1) on Robin bound-
ary control for the heat equation (results after 6 iterations). (Right) State:

Target, DA, CA(BC), CA(TR). (Left) Con-
trol: DA, CA(BC), CA(TR).

documented for fully nonlinear, compressible Navier–Stokes problems [64, 66] when using continuous
adjoints.

12.4 Summary

We have performed a comparison of discrete and continuous adjoints for use in optimization (in this case
an optimal boundary control problem). The main conclusion of this study, and extensive prior experience
with adjoint methods, is that both discrete and continuous adjoints can be successfully used for large-scale
optimization problems. However, there are important issues associated with each choice:

1. A discrete adjoint requires reverse-mode AD or the transpose of the exact Jacobian, neither of which
may be available in production simulation codes.

2. There is no unique continuous adjoint – there are many choices that can be made that may or may
not affect the optimization solution process.

3. A continuous adjoint offers tremendous flexibility (a pro and a con) in formulating the discretization
of the adjoint. In particular, one can (formally) use non-smooth methods (e.g. numerical fluxes and
limiter) for both the state and adjoint.

4. The discretization of the continuous adjoint can leverage much of the existing code associated with
the forward state solver.

5. A continuous adjoint will (likely) destroy symmetry properties of the optimality conditions that may
be required by some optimization algorithms.

178

6. Optimization algorithms using a continuous adjoint may have degraded convergence or may not
converge at all. . . . However, in practice, a properly regularized optimization problem can yield
useful solutions with a continuous adjoint formulation.

We close, by emphasizing that while a discrete adjoint and the resulting “exact” gradient can be convenient
for optimization, it is possible that all that one obtains is a very good solution to the wrong problem. In the
end, we want our methods to produce optimal solutions that are good approximations to the solution of the
original continuous PDE-based optimization problem. If there are problems and resolutions for which a
continuous adjoint2 does not lead to useful solutions, then one should be equally cautious about solutions
obtained using a discrete adjoint. While one may obtain a converged optimal solution using a discrete
adjoint, it can be no better than the underlying accuracy of the original state solution and the failure of the
continuous adjoint approach may indicate that numerical resolution is insufficient or that the problem is not
properly formulated (i.e. higher regularity of the controls may be warranted).

2a consistent discretization of the continuous adjoint PDE that has similar accuracy as the state solver

179

References

[1] Methods and applications of interval analysis. SIAM.

[2] F. Abergel and R. Temam. On some control problems in fluid mechanics. Theoretical and
Computational Fluid Dynamics, 1:303–325, 1990.

[3] David Abrahams. Generic programming techniques.

[4] Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova. A posteriori error
estimation for discontinuous Galerkin solutions of hyperbolic problems. Comp. Meth. in Appl.
Mech. Eng., 191(11–12):1097–112, 2002.

[5] Experimental Data Base for Computer Program Assessment. Technical Report 138, AGARD
Advisory Report, 1979.

[6] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Comp. Meth.
in Appl. Mech. Eng., 142(1–2):1–88, 1997.

[7] V. Akcelik, G. Biros, O. Ghattas, K. R. Long, and B. van Bloemen Waanders. A variational finite
element method for source inversion for convective-diffusive transport. Finite Elements in Analysis
and Design. The International Journal of Applied Finite Elements and Computer Aided
Engineering, 39(8):683–705, 2003.

[8] G.A. Newman D.L. Alumbaugh. 3-d electric magnetic inversion using conjugate gradients.
Technical Report SAND97-1296C, Sandia National Laboratories, 1997.

[9] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. SIAM,
1995.

[10] W. K. Anderson and D. L. Bonhaus. An Implicit Algorithm for Computing Turbulent Flows on
Unstructured Grids. Computer and Fluids, 23(1):1–21, 1994.

[11] P. Antognetti and G. Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, 1988.

[12] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SJNA, 39(5):1749–79, 2001.

[13] U. M. Ascher, R. M. M. Mattheij, and R. D. Russel. Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations. Classics in Applied Mathematics, Vol. 13. SIAM,
Philadelphia, 1995.

180

[14] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, London, New
York, 1994.

[15] Trilinos/aztecoo: Object-oriented aztec linear solver package.
http://software.sandia.gov/Trilinos/doc
/aztecoo/doc/html/index.html.

[16] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc, portable
extensible toolkit for scientific computing (web site). http://www.mcs.anl.gov/petsc.

[17] W. Bangerth and R. Rannacher. Finite element approximation of the acoustic wave equation: error
control and mesh adaptation. East-West J. Numer. Math., 7(4):263–282, 1999.

[18] J. Barhen, J. G. Berryman, L. Borcea, J. Dennis, C. de Groot-Hedlin, F. Gilbert, P. Gill,
M. Heinkenschloss, L. Johnson, T. McEvilly, J. Moré, G. Newman, D. Oldenburg, P. Parker,
B. Porto, M. Sen, V. Torczon, D. Vasco, and N. B. Woodward. Optimization and geophysical inverse
problems. Technical Report LBNL–46959, Ernest Orlando Lawrence Berkeley National
Laboratories, Earth Science Division, 2000.

[19] T. Barth. The Design and Application of Upwind Schemes on Unstructured Meshes. AIAA Paper
89-0366, January 1989.

[20] T. Barth. A 3-D upwind Euler solver for unstructured meshes. AIAA Paper 91-1548-CP, 1991.

[21] Timothy J. Barth and Mats G. Larson. A posteriori error estimates for higher order Godunov finite
volume methods on unstructured meshes. Technical Report NAS-02-001, NASA Ames Research
Center, February 2002.

[22] R. A. Bartlett. Object Oriented Approaches to Large Scale NonLinear Programming For Process
Systems Engineering. Ph.D Thesis, Chemical Engineering Department, Carnegi Mellon University,
Pittsburgh, 2001.

[23] R. A. Bartlett. MOOCHO : Multifunctional Object-Oriented arCHitecture for Optimization, User’s
Guide. Sandia National Labs, 2003.

[24] R. A. Bartlett. TSFCore::Nonlin : An extension of TSFCore for the development of nonlinear
abstract numerical algorithms and interfacing to nonlinear applications. Technical report
SAND03-xxxx, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,
California 94550, 2003.

[25] R. A. Bartlett, M. A. Heroux, and K. R. Long. Tsfcore : A package of light-weight object-oriented
abstractions for the development of abstract numerical algorithms and interfacing to linear algebra
libraries and applications. Technical report SAND03-xxxx, Sandia National Laboratories,
Albuquerque, New Mexico 87185 and Livermore, California 94550, 2003.

[26] Roscoe A. Bartlett. Object Oriented Approaches to Large-Scale Nonlinear Programming for
Process Systems Engineering. PhD thesis, Department of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 2001.

[27] Achim Basserman. Private communication. 2002.

[28] R. Becker, C. Johnson, and R. Rannacher. Adaptive error control for multigrid finite element
methods. Computing, 55(4):271–88, 1995.

181

[29] Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in
finite element methods. Acta Numerica, 10:1–102, 2001.

[30] L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova. Programs for automatic di erentiation
for the machine besm. Technical report, Institute for Precise Mechanics and Computation
Techniques, Academy of Science, 1959.

[31] Steve Benson, Lois Curfman McInnes, and Jorge Moré. TAO : Toolkit for advanced optimization
(web page).

[32] M. Berggren. Discrete adjoint equations and gradients for edge-based discretizations of the euler
equations. Technical report, Sandia National Laboratories, 2003. Unpublished.

[33] M. Berggren and M. Heinkenschloss. Parallel solution of optimal-control problems by time-domain
decomposition. In M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Periaux, and M. F.
Wheeler, editors, Computational Science for the 21st Century, pages 102–112, Chichester, 1997. J.
Wiley.

[34] J. T. Betts. Practical Methods for Optimal Control using Nonlinear Programming. Advances in
Design and Control. SIAM, Philadelphia, 2001.

[35] Thomas R. Bewley, Parviz Moin, and Roger Teman. DNS-based predictive control of turbulence: an
optimal target for feedback algorithms. J. Fluid Mech., 447:179–225, 2001.

[36] G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–Schur methods for PDE–constrained
optimization. part I: The Krylov–Schur solver. Technical report, Computational Mechanics Lab,
Department of Civil and Environmental Engineering, Carnegie Mellon University, 2000.
http://www.cs.cmu.edu/∼oghattas.

[37] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. Adifor - generating derivative codes
from fortran programs. SCientific Programming, 1992.

[38] Christian H. Bischof, Lucas Roh, and Andrew Mauer. ADIC — An extensible automatic
differentiation tool for ANSI-C. Software–Practice and Experience, 27(12):1427–1456, 1997.

[39] L. S. Blackford, J. Choi, A. Cleary, E.D. ’Azevedo, J. Demmel, I. Dhilon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walder, and R.C. Whaley. ScalLAPACK User’s
Guide. SIAM, Philadelphia, PA, 1997.

[40] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Elsevier, 2001.

[41] H. G. Bock. Randwertprobleme zur Parameteridentifizierung in Systemen nichtlinearer
Differentialgleichungen. Preprint Nr. 442, Universität Heidelberg, Institut für Angewandte
Mathematik, SFB 123, D–6900 Heidelberg, Germany, 1988.

[42] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[43] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov–Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp.
Meth. Appl. Mech. Engng., 32:199–259, 1982.

[44] P.N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM Journal
of Statistical Computing, 11:450–481, 1990.

182

[45] R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblems
und Aufgaben der optimalen Steuerung. Technical report, Report of the Carl-Cranz Gesellschaft,
1971.

[46] R. H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-newton matrices and their use
in limited methods. Math. Prog., 63:129–156, 1994.

[47] George D. Byrne and Allan C. Hindmarsh. PVODE, an ODE solver for parallel computers. Int. J.
High Perf. Comput. Applic, 13:354–365, 1999.

[48] D. G. Cacuci. Sensitivity and Uncertainty Analysis. Volume 1: Theory. CRC Press, Boca Raton,
2003.

[49] Xing Cai. Two object-oriented approaches to the parallelism of diffpack, 1999.

[50] Y. Cao, S. Li, and L. Petzold. Adjoint sensitivity analysis for differential-algebraic equations, part I:
The adjoint DAE systems. Technical report, Computational Sciences and Engineering, University of
California, Santa Barbara, 2000.

[51] Y. Cao, S. Li, and L. Petzold. Adjoint sensitivity analysis for differential-algebraic equations, part II:
Numerical solution. Technical report, Computational Sciences and Engineering, University of
California, Santa Barbara, 2000.

[52] C. Cartel, R. Glowinski, and J.-L. Lions. On the exact and approximate boundary controllabilities
for the heat equation: a numerical approach. Journal of Optimization Theory and Applications,
82:429–484, 1994.

[53] Paul Castillo and Bernardo Cockburn. An a priori error analysis of the local discontinuous Galerkin
method for elliptic problems. SJNA, 38(5):1676–1706, 2000.

[54] N.D. Cesare and O. Pironneau. Flow control problem using automatic differentiation in c++.
Technical report, Unversite Pierre et Marie Curie, LAN-UPMC report 99013, 2000.

[55] Yong Chang. Reduced Order Methods for Optimal Control of Turbulence. PhD thesis, Rice
University, Mechanical Engineering and Materials Science, 2000.

[56] Yong Chang and S. Scott Collis. Active control of turbulent channel flows based on large eddy
simulation. ASME Paper No. FEDSM-99-6929, 1999.

[57] C. J. Chen and W. S. Feng. Relaxation-based transient sensitivity computations for mosfet circuit.
IEEE Trans. Computer-Aided Design, 1995.

[58] Guoquan Chen and S. Scott Collis. Toward optimal control of aeroacoustic flows using
discontinuous Galerkin discretizations. AIAA paper 2004-0364, January 2004.

[59] Leon O. Chua and Pen-Min Lin. Computer-Aided Analysis of Electronic Circuits: Algorithms and
Computational Techniques. Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

[60] Robert L. Clay, Kyran D. Mish, Ivan J. Otero, Lee M. Taylor, and Alan B. Williams. An annotated
reference guide to the finite-element interface (FEI) specification : Version 1.0. Technical Report
SAND99-8229, Sandia National Laboratories, 1999.

[61] Clay, R.L., B.A. Allan, L.D. Mish, A.B. Williams. ISIS++ reference guide (iterative scalable implicit
solver in C++) version 1.1. Technical Report SAND99-8231, Sandia National Laboratories, 1999.

183

[62] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method for
time-dependent convection-diffusion systems. SJNA, 35(6):2440–2463, 1998.

[63] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Optimal control of
unsteady compressible viscous flows. International Journal for Numerical Methods in Fluids,
40(11):1401–1429, 2002.

[64] S. Scott Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Towards adjoint-based
methods for aeroacoustic control. AIAA Paper 2001-0821, 2001.

[65] S. Scott Collis and Kaveh Ghayour. Discontinuous Galerkin for compressible DNS. ASME paper
number FEDSM2003-45632, 2003.

[66] S. Scott Collis, Kaveh Ghayour, Matthias Heinkenschloss, Michael Ulbrich, and Stefan Ulbrich.
Optimal control of unsteady compressible viscous flows. Inter. J. Num. Meth. Fluids, 40:1401–1429,
2002.

[67] D. N. Daescu and G. R. Carmichael. An adjoint sensitivity method for the adaptive location of the
observations in air quality modeling. journal of Atmospheric Sciences, 2003.

[68] S.N. Daescu and I.M. Navon. An analysis of a hybrid optimization method for variational data
assimilation. International Journal of Computational Fluid Dynamics, 2003.

[69] Davinci user’s manual. Technical report, Avanti! Corporation TCAD Business Unit, 1998.

[70] D.M. Day, R.S. Patil, and T.C. Warburton. Discontinuous Galerkin descretizations applied to
eigenvalue problems on non-conforming meshes. Technical Report SAND2004-0000J, Sandia
National Laboratory, PO Box 5800, Albuquerque, NM 87185-5800, 2004. In progress.

[71] James Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[72] J. E. Dennis and M. Heinkenschloss. Trust-region interior-point sqp algorithms for a class of
nonlienar programming problems. Technical Report TR94-45, Department of Computational and
Applied Mathematics, Rice University, 1996.

[73] P. Deuflhard. Nonlinear equation solvers in boundary value problem codes. In B. Childs, editor,
Codes for the BVPs in ODEs, pages 40–66. Springer Lecture Notes in Computer Science, Vol. 74,
1979.

[74] S. W. Director and R. A. Rohrer. The generalized adjoint network and network sensitivities. IEEE
Tran. Circuit Theory, 1969.

[75] H. K. Dirks and K. Eickhoff. Numerical models and table models for mos circuit analysis. Proc.
NASECODE IV, pages 13–24, June 1985.

[76] H. C. Edwards. SIERRA framework version 3: Core services theory and design. Technical report
SAND2002-3616, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,
California 94550, 2002.

[77] H. C. Edwards and J. R. Stewart. SIERRA : A Software Environment for Developing Complex
Multiphysics Applications. In K. J. Bathe, editor, Proceedings of First MIT Conference on
Computational Fluid and Solid Mechanics. Elsevier Scientific, 2001.

184

[78] M. J. Eppstein, F. Fedele, J. Laible, C. Zhang, A. Godavarty, and E. M. Sevick-Muraca. A
comparison of exact and approximate adjoint sensitivities in fluorescence tomography. IEEE
TRANSACTIONS ON MEDICAL IMAGING, 2003.

[79] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations. Press
Syndicate of the University of Cambridge, 1996.

[80] Donald J. Estep, Mats G. Larson, and Roy D. Williams. Estimating the Error of Numerical Solutions
of Systems of Reaction-Diffusion Equations, volume 146 of Memoirs of the American Mathematical
Society. Americal Mathematical Society, 2000.

[81] H. O Fattorini. Infinite dimensional optimization and optimal control. Encyclopedia of
Mathematics, Vol. 62. Cambridge University Press, Cambridge, New York, 1999.

[82] P. Feldmann, T. V. Nguyen, S. W. Director, and R. A. Rohrer. Sensitivity computation in piecewise
approximate circuit simulation. IEEE Trans. Computer-Aided Design, 1991.

[83] P. A. Forsyth and H. Jiang. Nonlinear Iteration Methods for High Speed Laminar Compressible
Navier-Stokes Equations. Computers and Fluids, 26(3):249–268, 1997.

[84] M. Fowler and K. Scott. UML Distilled, second edition. Addison-Wesley, 2000.

[85] G.A.Baker. Error estimates for finite element methods for second order hyperbolic equations. SIAM
J. Numer. Anal., 13(4):564–576, 1976.

[86] E. Gamma et al. Design Patterns: Elements fo Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[87] Micheal Gertz and Stephen Wright. Object oriented software for quadratic programming.
http://www.cs.wisc.edu/˜swright/ooqp/, 2001.

[88] M.B. Giles and N.A. Pierce. Adjoint equations in CFD: Duality, boundary conditions and solution
behaviour. AIAA, (Paper 97-1850), 1997.

[89] M.B. Giles and N.A. Pierce. Adjoint error correction for integral outputs. In T. Barth and
H. Deconinck, editors, Error Estimation and Adaptive Discretization Methods in Computational
Fluid Dynamics, volume 25 of Lecture Notes in Computational Science and Engineering, pages
47–96. Springer-Verlag, 2002.

[90] Michael B. Giles and Endre Süli. Adjoint methods for PDEs: A posteriori error analysis and
postprocessing by duality. Acta Numerica, pages 145–236, 2002.

[91] P. E. Gill, L. O. Jay, M. W. Leonard, L. Petzold, and V. Sharma. An SQP method for the optimal
control of large–scale dynamical systems. J. Comp Appl. Math., 20:197–213, 2000.

[92] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, Orlando, San
Diego, New-York,. . ., 1981.

[93] S. Glasstone and M.C. Edlund. The elements of nuclear reactor theory. Technical report, Van
Nostrand, Princeton, New Jersey, 1952.

[94] R. Glowinski and J.-L. Lions. Exact and approximate controllability for distributed parameter
systems. In A. Iserles, editor, Acta Numerica 1995, pages 159–333. Cambridge University Press,
Cambridge, London, New York, 1995.

185

[95] M.S. Gockenbach and W.W. Symes. The hilbert class library.
http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html.

[96] A. Greenbaum. Iterative Methods for the Solution of Linear Systems. SIAM, Philadelphia, 1997.

[97] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, 2000.

[98] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, 2000.

[99] A. Griewank. A mathematical view of automatic differentiation. In A. Iserles, editor, Acta Numerica
2003, pages 321–398. Cambridge University Press, Cambridge, London, New York, 2003.

[100] Andreas Griewank, David Juedes, and Jean Utke. ADOL–C, a package for the automatic
differentiation of algorithms written in C/C++. ACM Trans. Math. Software, 22(2):131–167, 1996.

[101] M. D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, Philadelphia, 2003.

[102] M. D. Gunzburger, L. S. Hou, and S. S. Ravindran. Analysis and approximation of optimal control
problems for a simplified ginzburg-landau model of superconductivity. Numerische Mathematik,
77:243–268, 1997. http://link.springer.de/link/service/
journals/00211/bibs/7077002/70770243.htm.

[103] M. D. Gunzburger and S. Manservisi. The velocity tracking problem for Navier–Stokes flows with
bounded distributed controls. SIAM J. Control Optimization, 37:1913–1945, 1999.

[104] M. D. Gunzburger and S. Manservisi. The velocity tracking problem for Navier–Stokes flows with
boundary control. SIAM J. Control Optimization, 39:594–634, 2000.

[105] K. Harriman, P. Houston, B. Senior, and E. Süli. hp-version discontinuous galerkin methods with
interior penalty for partial differential equations with nonnegative characteristic form. In C.-W. Shu,
T. Tang, and S.-Y. Cheng, editors, Recent Advances in Scientific Computing and Partial Differential
Equations, volume 330 of Contemporary Mathematics, pages 89–119. American Mathematical
Society, 2003.

[106] R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple target
functionals. Technical Report 2002/32, University of Leicester, 2002.

[107] A. Haselbacher and J. Blazek. Accurate and Efficient discretization of Navier-Stokes Equations on
Mixed Grids. AIAA Journal, 38(11):2094–2102, November 2000.

[108] M. Heinkenschloss. Time–domain decomposition iterative methods for the solution of distributed
linear quadratic optimal control problems. Technical Report TR00–31, Department of
Computational and Applied Mathematics, Rice University, Houston, TX 77005–1892, 2000.
appeared as [110].

[109] M. Heinkenschloss. Time–domain decomposition iterative methods for the solution of distributed
linear quadratic optimal control problems: The discretized case. Technical Report SAND–xx,
Sandia National Laboratories, 2003.

[110] M. Heinkenschloss. Time–domain decomposition iterative methods for the solution of distributed
linear quadratic optimal control problems. Journal of Computational and Applied Mathematics,
xx:xx–yy, 2004. In press.

186

[111] M. Heinkenschloss. Time–domain decomposition iterative methods for the solution of distributed
linear quadratic optimal control problems. Journal of Computational and Applied Mathematics,
173:169–198, 2005.

[112] M. Heinkenschloss and F. Tröltzsch. Analysis of the Lagrange–SQP–Newton method for the control
of a phase field equation. Control and Cybernetics, 28:177–211, 1999.

[113] M. A. Heroux. Epetra : Concrete C++ linear algebra classes for parallel linear algebra.
http://software.sandia.gov/Trilinos.

[114] J.S. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation in a
simplex. SJNA, 35:655–676, 1998.

[115] J.S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured grids. I. time-domain
solution of Maxwell’s equations. JCP, 181(1):186–221, 2002.

[116] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker,
and Carol S. Woodward.

[117] M. Hinze and K. Kunisch. Three control methods for time-dependent fluid flow. Flow, Turbulence
and Combustion. An International Journal, 65(3-4):273–298, 2000.

[118] M. Hinze and K. Kunisch. Second order methods for optimal control of time–dependent fluid flow.
SIAM J. Control and Optimization, 40:925–946, 2001.

[119] M. Hinze and S. Volkwein. Analysis of instantaneous control for the Burgers equation. Nonlinear
Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A:
Theory and Methods, 50(1, Ser. A: Theory Methods):1–26, 2002.

[120] M. Hinze and A. Walter. An optimal memory-reduced procedure for calculating adjoints of the
instationary Navier-Stokes equations. Technical Report MATH-NM–9-2002, Insitut für Numerische
Mathematik, Technische Universität Dresden, Zellescher Weg 12-14, D–01062 Dresden, Germany,
2002.

[121] K.-H. Hoffmann and L. Jiang. Optimal control problem of a phase field model for solidification.
Numer. Funct. Anal., 13:11–27, 1992.

[122] Paul Houston, Bill Senior, and Endre Süli. Hp-discontinuous Galerkin finite element methods for
hyperbolic problems: Error analysis and adaptivity. Inter. J. Num. Meth. Fluids, 40:153–169, 2002.

[123] Hspice user’s manual. Technical report, Meta-Software, Inc., Campbell, California, 1996.

[124] Scott Hutchinson. Xyce users’ guide. Technical report SAND98-xxxx, Sandia National
Laboratories, Albuquerque, New Mexico 87185, 2002.

[125] K. Ito and S. S. Ravindran. Optimal control of thermally convected fluid flows. SIAM J. on Scientific
Computing, 19:1847–1869, 1998.

[126] J. J. Dongarra and J. Du Croz and S. Hammarling and R. J. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14:1–17, 1988.

[127] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer Verlag, Berlin, Heidelberg,
New York, second edition, 1996.

187

[128] A. Jameson. Aerodynamic design via control theory. journal of Scientific Computing, (3):233, 1988.

[129] A. Jameson, J. Alonso, J. Reuther, L. Martinelli, and J. Vassberg. Aerodynamic shape optimization
techniques based on control theory. In AIAA 98-2538, volume 29, Albuquerque, NM, June 15-18
1998. AIAA.

[130] H. Jasak and A.D. Gosman. Element residual error estimate for the finite volume method.
Computers in Fluids, 32:223–248, 2003.

[131] S.A. Hutchinson G.L. Hennigan K.D Devine A.G. Salinger J.N. Shadid H.K. Moffat. Mpsalsa a
finite element computer program for reacting flow problems part 1 - theoretical development.
Technical Report SAND95-2752, Sandia National Laboratories, 1995.

[132] T. Kaminski and M. Heimann. A coarse grid three-dimensional global inverse model of the
atmospheric transport 1. andjoint model and jacobian matrix. J. Geophysics, 1999.

[133] E.R. Keiter, S.A. Hutchinson, R.J.Hoekstra, E.L. Rankin, T.V. Russo, and L.J. Waters.
Computational algorithms for device-circuit coupling. Technical Report SAND2003-0080, Sandia
National Laboroatories, January 2003.

[134] Eric R. Keiter. Xyce parallel electronic simulator design: Mathematical formulation. Technical
report SAND02-xxxx, Sandia National Laboratories, Albuquerque, New Mexico 87185, 2002.

[135] D. D. Knight. A Fully Implicit Navier-Stokes Algorithm Using an Unstructured Grid and Flux
Difference Splitting. Applied Numerical Mathematics, 16:101–128, 1994.

[136] T. Kolda and R. Pawlowski. Nox: An object oriented, nonlinear solver package.
http://software.sandia.gov/Trilinos.

[137] G. Kontarev. Adjoint equation technique applied to meteorological problems. Technical report,
European Centre for Medium Range Weather Forecasts, 1980.

[138] T. Koornwinder. Theory and Application of Special Functions, chapter Two-Variable Analogues of
the Classical Orthogonal Polynomials, pages 435–495. Academic Press, 1975.

[139] Kevin M. Kramer and W. Nicholas G. Hitchon. Semiconductor Devices: A Simulation Approach.
Prentice-Hall, Upper Saddle River, New Jersey, 1997.

[140] K. Kunisch and X. Marduel. Optimal control of non–isothermal viscoelastic fluid flows. J. of
Non-Newtonian Fluid Mechanics, 88:261–301, 2000.

[141] M. G. Larson and T. J. Barth. A posteriori error estimation for adaptive discontinuous Galerkin
approximations of hyperbolic systems. Lecture Notes in Computational Science and Engineering,
11:363–368, 2000.

[142] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient multiple shooting based
reduced SQP strategy for large scale dynamic process optimization. part I: Theoretical aspects.
Comput. Chem. Engng., 27:157–166, 2003. http://www.iwr.uni-heidelberg.de/∼Daniel.Leineweber/.

[143] D. B. Leineweber, H. Schäfer, H. G. Bock, and J. P. Schlöder. An efficient multiple shooting based
reduced SQP strategy for large scale dynamic process optimization. part II: Software aspects and
applications. Comput. Chem. Engng., 27:167–174, 2003.
http://www.iwr.uni-heidelberg.de/∼Daniel.Leineweber/.

188

[144] H. Levine and J. Schwinger. Phys Review, 1949.

[145] S. Li and L. Petzold. Design of new DASPK for sensitivity analysis. Technical report,
Computational Sciences and Engineering, University of California, Santa Barbara, 1999.
http://www.engineering.ucsb.edu/∼cse/.

[146] Shengtai Li and Linda Petzold. Software and algorithms for sensitivity analysis of large-scale
differential algebraic systems. Journal of Computational and Applied Mathematics, 125:131–145,
2000.

[147] S. Linnainmaa. Taylor expansion of the accumulated rounding errror. BIT (Nordisk Tidskrift for
Informationsbehandling), 1976.

[148] M.-S. Liou and B. van Leer. Choice of Implicit and Explicit operators for the upwind differencing
method. AIAA Paper 1988-0624, January 1988.

[149] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, May
1998.

[150] Andrew Lumsdanie and Jeremy Siek. ITL : the Iterative Template Library.
http://www.osl.iu.edu/research/itl/, 1998.

[151] H. Luo, D. Baum, J. D. Sharov, and R. Lohner. On the Computation of Compressible Turbulent
Flows on Unstructured Grids. International Journal of Computational Fluid Dynamics, 14:253–270,
2001.

[152] H. Luo, J. D. Baum, and R. Lohner. Edge-Based Finite Element scheme for the Euler Equations.
AIAA Journal, 32(6):1180–1190, June 1994.

[153] H. Luo, J. D. Baum, and R. Lohner. A fast, matrix-free implicit method for compressible flows on
unstructured grids. Journal of Computational Science, 146:664–690, 1998.

[154] H. Luo, J. D. Baum, R. Lohner, and J. Cabello. Implicit Schemes and Boundary Conditions for
Compressible Flows on Unstructured Meshes. AIAA Paper 1994-0816, January 1994.

[155] T. Maly and L. R. Petzold. Numerical methods and software for sensitivity analysis of
differential-algebraic systems. Applied Numerical Mathematics, 20:57–79, 1996.

[156] G.I. Marchuk and V.V. Penenko. Study of the sensitivity of discrete models of atmospheric and
oceanic dynamics. Atmospheric and Oceanic Physics, 1980.

[157] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The complex-step derivative
approximation. ACM Trans. Math. Softw., 29(3):245–262, 2003.

[158] C. Mavriplis. Adaptive mesh stategies for the spectral element method. Comp. Meth. in Appl. Mech.
Eng., 116:77–86, 1994.

[159] Kartikeya Mayaram and Donald O. Pederson. Codecs: A mixed-level device and circuit simulator.
Proc. IEEE Int. Conf. Computer-Aided Design, pages 112–115, November 1988.

[160] Kartikeya Mayaram and Donald O. Pederson. Coupling algorithms for mixed-level circuit and
device simulation. IEEE Transactions on Computer Aided Design, II(8):1003–1012, 1992.

189

[161] J.R.F. McMacken and S.G.Chamberlain. Chord: A modular semiconductor device simulation tool
incorporating external network models. IEEE Transactions on Computer Aided Design, 8:826–836,
August 1989.

[162] Robert C. Melville, Ljiljana Trajkovic, San-Chin Fang, and Layne T. Watson. Globally convergent
homotopy methods for the dc operating point problem. Technical report TR 90-61, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061.

[163] Robert C. Melville, Ljiljana Trajkovic, San-Chin Fang, and Layne T. Watson. Artificial parameter
homotopy methods for the dc operating point problem. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 12(6):861–877, 1993.

[164] Mike A. Heroux and Teri Barth and David Day and Rob Hoekstra and Rich Lehoucq and Kevin
Long and Roger Pawlowski and Ray Tuminaro and Alan Williams. Trilinos : object-oriented,
high-performance parallel solver libraries for the solution of large-scale complex multi-physics
engineering and scientific applications. Web page.

[165] M. S. Mock. Time-dependent simulation of coupled devices. Proc. NASECODE II, pages 113–131,
June 1981.

[166] MPI Fourum, the. MPI: A Message Passing Interface Standard. University of Tennessee, 1995.
http://www.mpi-fourum.org/docs/docs.html.

[167] Jens-Dominik Müller and Michael B. Giles. Solution adaptive mesh refinement using adjoint error
analysis. AIAA, (Paper 2001-2550), June 2001.

[168] S. K. Nadarajah and A. Jameson. A comparison of the continuous and discrete adjoint approach to
automatic aerodynamic optimization. In AIAA Paper 2000-0667, 2000.

[169] Laurence Nagel and Ronald Rohrer. Computer analysis of nonlinear circuits, excluding radiation
(cancer). IEEE Journal of Solid-State Circuits, sc-6(4):166–182, 1971.

[170] Nash, S. and A. Sofer. Linear and Nonlinear Programming. McGraw Hill, 1996.

[171] G. A. Newman and D. L. Alumbaugh. Electromagnetic modelling and inversion on massively
parallel computers. Geophys. J. Int., 128:345–354, 1997.

[172] G. A. Newman and G. M. Hoversten. Solution trategies for two and three dimensional
electromagnetic inverse problems. Journal of Inverse Problems, 2000. to appear.

[173] T. V. Nguyen, A. Devgan, and O. J. Nastov. Adjoint transient sensitivity computation in piecewise
linear simulation.

[174] J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, 2000.

[175] J. Nocedal and Stephen Wright. Numerical Optimization. Springer, New York, 1999.

[176] H. J. Oberle and W. Grimm. BNDSCO-a program for the numerical solution of optimal control
problems. Technical report, Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen,
Germany, 1989.

[177] Department of Energy. Asci: Advanced simulation and computing initiative.
http://www.sandia.gov/ASCI.

190

[178] Tom Quarles. Spice 3 version 3f5 users’ manual. University of California, Berkeley, CA, 1994.

[179] R. Rannacher. Error control in finite element computations. an introduction to error estimation and
mesh-size adaptation, 1998.

[180] J. Reuther and A. Jameson. Aerodynamic shape optimization of wing and wing-body congurations
using control theory.

[181] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerodynamic shape optimization
of complex aircraft configurations via an adjoint formulation. In AIAA Paper 96–0094, 34th
Aerospace Sciences Meeting and Exhibit, Jan. 15-18, 1996, Reno, NV, 1996.

[182] Rolf Riesen, Ron Brightwell, Lee Ann Fisk, Tramm Hudson, Jim Otto, and Arthur B. Maccabe.
Cplant. In Proceedings of the Second Extreme Linux workshop, 1999.

[183] P. L. Roe. Approximate Riemann Solvers, Parameters Vectors and Difference Schemes. Journal of
Computational Physics, 43:357–372, 1981.

[184] Gregory J. Rollins and John Choma. Mixed-mode pisces-spice coupled circuit and device solver.
IEEE Transactions on Computer Aided Design, 7:862–867, August 1988.

[185] Francis Rotella. Mixed circuit and device simulation for analysis, design, and optimization of
opto-electronic, radio requency, and high speed semiconductor devices. Phd thesis, Stanford
University, 2000.

[186] R. Roussopolos. Acad Sci, 1953.

[187] C.W. Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition. Int
Journal on Bifurcation and Chaos, 2004.

[188] C. W. Ho A. E. Ruehli and P. A. Brennan. The modified nodal approach to network analysis. IEEE
Trans. Circuits Systems, 22:505–509, 1988.

[189] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston,
New-York, Singapore, Toronto, 1996.

[190] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7:856–869,
1986.

[191] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston,
1996.

[192] A. G. Salinger, N.M. Bou-Rabee, E.A. Burroughs, R.B. Lehoucq, R.P. Pawlowski, L.A. Romero,
and E.D. Wilkes. LOCA: A library of continuation algorithms - Theroy manual and user’s guide.
Technical report, Sandia National Laboratories, Albuquerque, New Mexico 87185, 2002.
SAND2002-0396.

[193] Sandia National Labs. ESI: Equation Solver Interface. http://z.ca.sandia.gove/esi,
2001.

[194] A. Sandu, D.N. Daescu, and G.R. Carmichael. Direct and adjoint sensitivity analysis of chemical
kinetic systems with kpp: I - theory and software tools. Atmospheric Environment, 2003.

191

[195] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, New York, 1984.

[196] R. Serban, S. Li, and L. Petzold. Adaptive algorithms for optimal control of time–dependent partial
differential–algebraic systems. International Journal of Numerical Methods in Engineering,
xx:xx–yyy, 2001. To appear http://www.engineering.ucsb.edu/∼cse/.

[197] T. M. Smith, C. C. Ober, and A. A. Lorber. SIERRA/Premo - A New General Purpose Compressible
Flow Simulation Code. AIAA Paper 2002-3292, June 2002.

[198] P. R. Spalart and S. R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows. AIAA
Paper 92-0439, 1992.

[199] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, 1980.

[200] W.M. Stacey. Variational methods in nuclear reactor physics. Technical report, Academic, New
York, 1974.

[201] James R. Stewart and Thomas J.R. Hughes. A tutorial in elementary finite element error analysis: A
systematic presentation of a priori and a posteriori error estimates. Comp. Meth. in Appl. Mech.
Eng., 158:1–22, 1998.

[202] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, New York, Berlin,
Heidelberg, London, Paris, second edition, 1993.

[203] D. A. Hocevar P. Yang T. N. Trick and B. D. Epler. Transient sensi-tivity computation for mosfet
circuits. IEEE Trans. Computer-Aided Design, 1985.

[204] R.S. Tuminaro, M.A. Heroux, S.A. Hutchinson, and J.N. Shadid. Official Aztec User’s Guide:
Version 2.1. Albuquerque, NM 87185, 1999.

[205] O. Ghattas V. Akcelik, G. Biros. Parallel multiscale gauss-newton-krylov methods for inverse wave
propagation. In Proceedings of the IEEE/ACM SC2002 Conference, Baltimore. IEEE/ACM, 2002.

[206] B.G van Bloemen Waanders, R.A. Bartlett, K.R. Long, P.T. Boggs, and A.G. Salinger. Large scale
non-linear programming for PDE constrained optimization. Technical report, Sandia National
Laboroatories, 2002.

[207] B. van Leer. Towards the Ultimate Conservation Difference Scheme III. Upstream-Centered
Finite-Difference Schemes for Ideal Compressible Flow. Journal of Computational Physics,
23:263–275, 1977.

[208] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, NJ, 1962.

[209] J. Vassberg and A. Jameson. Aerodynamic shape optimization of a reno airplane. International
Journal of Vehicle Design, 2002.

[210] D. A. Venditti and D. L. Darmofal. A grid adpativity methodology for functional outputs of
compressible flow simulations. In AIAA, 15th Computational Fluis Dynamics Conference, 2001.

[211] David A. Venditti and David L. Darmofal. Adjoint error estimatino and grid adaptation for
functional outputs: Application to quasi-one-dimensional flow. J. Comp. Phys., 164:204–227, 2000.

192

[212] Jiri Vlach and Kishore Singal. Computer Methods for Circuit Analysis and Design. Chapman and
Hall, New York, 1994.

[213] S. Volkwein. Boundary control of the Burgers equation: Optimality conditions and reduced order
approach. In Optimal Control of Complex Structures, International Series of Numerical
Mathematics, Vol. 139, pages 267–278. Birkhäuser Verlag, 2002.

[214] R. Laur W. L. Engl and H. K. Dirks. Medusa - a simulator for modular circuits. IEEE Trans.
Computer-Aided Design, CAD-1:85–93, 1982.

[215] R. E. Wengert. A simple automatic derivative evaluation program. Comm. ACM, 1964.

[216] D. L. Whitaker. Three-Dimensional Unstructured Grid Euler Computations Using a Fully-Implicit,
Upwind Method. AIAA Paper 93-3337, January 1993.

[217] E.P. Wigner. Effects of small perturbations on pile period. Technical report, Chicago Report
CP-G-3048, 1945.

[218] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition.

[219] C. S. Woodward, K. E. Grant, and R. Maxwell. Applications of sensitivity analysis to uncertainty
quantification in variably saturated flow.

[220] Tor A. Fjeldly Trond Ytterdal and Michael Shur. Introduction to Device Modeling and Circuit
Simulation. John Wiley and Sons, New York, 1988.

[221] X.D. Zhang, J.-Y. Trépanier, and R. Camarero. A posteriori error estimation for finite-volume
solutions of hyperbolic conservation laws. Comp. Meth. in Appl. Mech. Eng., 185:1–19, 2000.

APPENDIX I

Tensor-valued matrices, Jacobians and eigendecompositioins

For the gradient expressions below, we will need Jacobian matrices of various objects. The basic
expressions needed for this are collected in this section.

An algebra of tensor-valued matrices

The flux functions in expression (7.14) are 3-by-1 matrices of first and second-order tensors. Various
operations may be defined on f . As we already have seen, the dot product with n may be defined by

193

element-wise operations,

n · f = f · n =

⎛⎜⎝ ρu · n
ρuu · n + np

ρHu · n

⎞⎟⎠ , (3)

n · fw = fw · n =

⎛⎜⎝ 0
p n

0

⎞⎟⎠ . (4)

This yields 3-by-1 matrices of the same dimension as the matrix of conservative variables (7.12). Note that
the second-order tensors in the second component of f and fw are symmetric, which allows n and f to
commute. Note also that these expressions are well defined with n being any first-order tensor, not just a
unit normal.

Expression (3) may be differentiated with respect to the conservative variables to obtain the Jacobian
matrix with respect to conservative variables

∂(f · n)
∂w

=

⎛⎜⎜⎜⎝
0 n 0

−u · nu + n(γ − 1)
|u|2

2
u · nI + u ⊗ n − (γ − 1)n ⊗ u (γ − 1)n

u · n
(

−H +
γ − 1

2
|u|2

)
nH − u · n(γ − 1)u γu · n

⎞⎟⎟⎟⎠ , (5)

Successively choosing n to be unit vectors in the Cartesian coordinate directions, we obtain three matrices
that in the literature usually are referred to as the Jacobian matrices with respect to the conservative
variables.

Differentiating the pressure with respect to the conservative variables yields

∂p

∂w
= (γ − 1)

(
1
2
|u|2,−u, 1

)
, (6)

a 1-by-3 matrix of tensors of order zero, one and zero. Moreover, differentiating the “boundary flux”
function (4), making use of expression (6) gives

∂(fw · n)
∂w

=

⎛⎜⎝0
n

0

⎞⎟⎠ ∂p

∂w
= (γ − 1)

⎛⎜⎝ 0 0 0
1
2 |u|2n −n ⊗ u n

0 0 0

⎞⎟⎠ . (7)

On the 3-by-1 and 3-by-3 matrix objects introduced above, we need to define standard elementary
operations, slightly generalized to take into account the presence of tensor objects in the matrices. The first
operation is an inner product involving two 3-by-1 matrices of dimensions like the conservative variables
in (7.12),

w = (w1,w2, w3)T , z = (z1,z2, z3)T .

The operation wTz = zTw may be defined through the formula

wTz = w1z1 + w2 · z2 + w3z3.

Note the dot product involved for the second components of w and z.

194

A second operation involves, in addition to a matrix like w above, also a 3-by-1 matrix of dimension like
the flux function, that is,

f = (f1,F 2,f3)
T ,

in which f1 and f3 are first-order tensors and F2 a second-order tensor. The operations fTw and wT f ,
returning first-order tensors may be defined by

fTw = f1w1 + F 2w2 + f3w3,

wT f = w1f1 + w2 · F 2 + w3f3.

Note the dot product involved for the second components, and note that fTw = wT f if and only if the
second-order tensor F2 is symmetric, which is the case for f being the flux function.

A third type of operation concerns matrices A with structure as the Jacobians (5) and (7) above. Such a
matrix may be partitioned by columns as

A = (a(1),a(2),a(3)),

in which a(1) and a(3) are 3-by-1 matrices of the same dimension as the conservative variables and a(2) is
of the same dimension as the flux function. If now g = (g1,g2, g3)T is a 3-by-1 matrix containing tensors
of dimensions like the matrix w of conservative variables in (7.12), we may define the matrix operation

Ag = a(1)g1 + a(2) · g2 + a(3)g3 (8)

returning an object of dimensions like the conservative variable w. The dot product in expression (8) is
applied to each row of a(2). An analogous definition holds for the operation gT A, returning an object of
dimensions like wT .

A fourth and final operation concerns multiplication of two matrices A and B with structure as the
Jacobians (5),

A =

⎛⎜⎝a11 a12 a13

a21 A22 a23

a31 a32 a33

⎞⎟⎠ , B =

⎛⎜⎝b11 b12 b13

b21 B22 b23

b31 b32 b33

⎞⎟⎠ .

Multiplication is defined by

AB =

=

⎛⎜⎝a11b11 + a12 · b21 + a13b31 a11b12 + a12 · B22 + a13b32 a11b13 + a12 · b23 + a13b33

a21b11 + A22b21 + a23b31 a21 ⊗ b12 + A22B22 + a23 ⊗ b32 a21b13 + A22b23 + a23b33

a31b11 + a32 · b21 + a33b31 a31b12 + a32 · B22 + a33b32 a31b13 + a32 · b23 + a33b33

⎞⎟⎠ .

Change of variables and eigendecomposition

The 3-by-1 matrix of primitive variables is

v = (ρ,u, p)T . (9)

195

When performing variable changes in the Jacobians, we need the transformation matrices

∂w
∂v

=

⎛⎜⎜⎝
1 0 0
u ρI 0

1
2
|u|2 ρu

1
γ − 1

⎞⎟⎟⎠

∂v
∂w

=
(

∂w
∂v

)−1

=

⎛⎜⎜⎜⎜⎝
1 0 0

−u

ρ

1
ρ
I 0

(γ − 1)
|u|2
2

−(γ − 1)u γ − 1

⎞⎟⎟⎟⎟⎠
The Jacobian with respect to the primitive variables is

(
∂w
∂v

)−1 ∂(f · n)
∂w

(
∂w
∂v

)
=

⎛⎜⎜⎝
u · n ρn 0

0 u · nI
1
ρ
n

0 ρc2n u · n

⎞⎟⎟⎠ , (10)

where c denotes the speed of sound,

c2 = γ
p

ρ
.

Comparing expressions (5) and (10), we see that the Jacobian with respect to the primitive variables has a
simpler structure, and its eigendecomposition is also easier to compute. Since the two Jacobians are related
by the similarity transformation ∂w/∂v, they share the same eigenvalues, and their eigenvectors are
related through the similarity transformation.

Denote by n̂ the first-order tensor n scaled to unit length, that is,

n̂ =
n

|n| .

The eigendecomposition of the Jacobian with respect to the primitive variables is

|n|
(

∂w
∂v

)−1 ∂(f · n̂)
∂w

(
∂w
∂v

)
= |n|RΛLT , (11)

where R and L(= R−T) are the matrices of right and left eigenvectors with respect to the primitive
variables,

R =
1
c2

⎛⎜⎜⎜⎝
1 n̂ 1

− c

ρ
n̂

c

ρ
S

bn
c

ρ
n̂

c2 0 c2

⎞⎟⎟⎟⎠ , L =

⎛⎜⎜⎜⎝
0 c2n̂ 0

−ρc

2
n̂ ρcS

bn
ρc

2
n̂

1
2 −n̂ 1

2

⎞⎟⎟⎟⎠

Λ =

⎛⎜⎝λ(1) 0 0
0 λ(2)I 0
0 0 λ(3)

⎞⎟⎠ ,

(12)

196

where

λ(1) = u · n̂ − c,

λ(2) = u · n̂,

λ(3) = u · n̂ + c.

Note the difference in dimensions of the three columns of R and L in expression (12): the first and third
columns are of dimension like the conservative variable w, whereas the second columns are of dimension
like the flux function f . This is a consequence of the d-multiplicity of the eigenvalue λ(2) = u · n. The
second columns ofR and L signify an eigenspace of dimension d associated with λ(2).

There are several possible choices of the second-order tensor S
bn that occurs in the second column of R

and L in expression (12), each corresponding to a different choice of basis for the eigenspace of dimension
d associated with eigenvalue λ(2). The second column of matrix L is a (block) eigenvector to Jacobian (10)
for any second order tensor S

bn of rank d − 1 such that n · S
bn = 0. Corresponding (block) left eigenvector

has the particular simple form given by the second column of matrix R if, in addition, S
bn satisfies

ST
bnS

bn = I − n̂ ⊗ n̂. (13)

A natural choice of S
bn, having the required properties, is the orthogonal projector

S
bn = I − n̂ ⊗ n̂. (14)

Another possibility is to choose S
bn = Sc

bn, where Sc
bn is the skew-symmetric second-order-tensor

representation of the cross product, that is,

Sc
bna = n̂ × a (15)

for each first-order tensor a. The choice (15) also satisfies the properties outlined above.

Using the notation [·] for components of a tensor in a Cartesian coordinate system, we have that, if
[n̂] = (n1, n2, n3)T ,

[S
bn] =

⎛⎜⎝1 − n2
1 −n1n2 −n1n3

−n2n1 1 − n2
2 −n2n3

−n3n1 −n3n2 1 − n2
3

⎞⎟⎠ ,

whereas

[Sc
bn] =

⎛⎜⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞⎟⎠ .

Thus, the choice (15) leads to simpler and sparser expressions in the eigenvectors. However the choice (15)
only makes sense for d = 3 (and, trivially, for d = 1, by setting Sc

bn = 0) whereas the choice (14) is fine in
all space dimensions. In the following, we will therefore assume the choice (14), although most
expressions given below also hold for the choice (15). The only exception is for certain expressions
occuring within derivatives of eigenvectors with respect to the normal.

Let us partition the eigenvector matrices in expression (11) by columns,

R = (r(1), r(2), r(3)), L = (l(1), l(2), l(3)). (16)

197

As explained above, the second column ofR and L will be of different dimensions than the first and third
column. Expanding in a Cartesian basis with basis vectors eα, α = 1, . . . , d, we may alternatively write the
eigenvector matrices partitioned as 2 + d columns of the same dimension, that is,

R = (r(1), r(2) · e1, r(2) · e2, r(2) · e3, r(3)),

L = (l(1), l(2) · e1, l(2) · e2, l(2) · e3, l(3)),
(17)

in 3D.

Using partitioning (16), the eigendecomposition (11) may also be written

|n|
(

∂w
∂v

)−1 ∂(f · n̂)
∂w

(
∂w
∂v

)
= |n|

[
λ(1)r(1)l(1) T + λ(2)r(2) · l(2) T + λ(3)r(3)l(3) T

]
.

(18)

Note the dot product for the second term in the expansion. Using partitioning (17), an alternative way of
writing expansion (18) is

|n|
(

∂w
∂v

)−1 ∂(f · n̂)
∂w

(
∂w
∂v

)
= |n|

[
λ(1)r(1)l(1) T +

d∑
α=1

λ(2)
(
r(2) · eα

)(
l(2) · eα

)T
+ λ(3)r(3)l(3) T

]
.

The matrix of right eigenvectors with respect to the conservative variables is

Rw =
(

∂w
∂v

)
R =

1
c2

⎛⎜⎜⎝
1 n̂ 1

u − cn̂ u ⊗ n̂ + cS
bn u + cn̂

H − cu · n̂ n̂
|u|2

2
+ cu · S

bn H + cu · n̂,

⎞⎟⎟⎠ , (19)

which, like R, can be partitioned by columns,

Rw = (r(1)
w , r(2)

w , r(3)
w)

= (r(1)
w , r(2)

w · e1, r(2)
w · e2, r(2)

w · e3, r(3)
w).

(20)

Roe-type dissipation

We now define the dissipation term d(wi+,wj−,nij). Here we simply refer to right and left states wi+
and wj− respectively. How these right and left states are defined is not of concern here as all of the
properties that we consider here are independent of how the states are defined. We begin with a few

definitions. For each edge
i j−→ in the mesh, attached to nodes i and j, define the Roe averaged quantities

ρ˜ = (ρi+ρj−)1/2,

ũ =
ρ

1/2
i+ ui+ + ρ

1/2
j− uj−

ρ
1/2
i+ + ρ

1/2
j−

, H̃ =
ρ

1/2
i+ Hi+ + ρ

1/2
j− Hj−

ρ
1/2
i+ + ρ

1/2
j−

.
(21)

198

From these, we may define

c̃ =
[
(γ − 1)(H̃ − 1

2
|ũ|2)

]1/2
.

(Equivalently, the quantity c̃2 can also be computed by averaging c2i+ and c2
j− similarly as is done for ũ

and H̃ .)

The Roe-averaged matrix of right eigenvectors with respect to the conservative variables is defined as

R̃w =
1
c̃ 2

⎛⎜⎜⎜⎝
1 n̂ij 1

ũ − c̃ n̂ij ũ ⊗ n̂ij + c̃S
bnij

ũ + c̃ n̂ij

H̃ − c̃ ũ · n̂ij n̂ij
|ũ|2

2
+ c̃ ũ · S

bnij
H̃ + c̃ ũ · n̂ij ,

⎞⎟⎟⎟⎠ , (22)

that is, matrix (19) with the entries replaced by corresponding Roe-averaged quantities and using the unit
normal n̂ij associated with the current edge. Similarly, we may define the Roe-averaged matrix of left
eigenvectors with respect to the primitive variables as

L̃ =

⎛⎜⎜⎜⎜⎜⎝
0 c̃ 2 n̂ij 0

−
ρ˜ c̃

2
n̂ij ρ˜ c̃ S

bnij

ρ˜ c̃

2
n̂ij

1
2 −n̂ij

1
2

⎞⎟⎟⎟⎟⎟⎠ . (23)

We may partition R̃w and L̃ by columns, similarly as was done for R and L in expressions (16) and (17),

R̃w = (r̃(1)
w , r̃(2)

w , r̃(3)
w)

= (r̃(1)
w , r̃(2)

w · e1, r̃(2)
w · e2, r̃(2)

w · e3, r̃(3)
w),

L̃ = (̃l(1), l̃(2), l̃(3))

= (̃l(1), l̃(2) · e1, l̃(2) · e2, l̃(2) · e3, l̃(3)).

(24)

The Roe-averaged eigenvalues are obtained similarly,

λ̃(1) = ũ · n̂ij − c̃,

λ̃(2) = ũ · n̂ij ,

λ̃(3) = ũ · n̂ij + c̃.

We introduce a simple entropy fix to prevent the eigenvalues to become exactly zero,

|λ̃(I)
e | =

⎧⎪⎪⎨⎪⎪⎩
(λ̃(I))2 + ε2

2ε
, for |λ̃(I)| ≤ ε,

|λ̃(I)| otherwise,

I = 1, 2, 3, (25)

and define the matrix

|Λ̃e| =

⎛⎜⎝|λ̃(1)
e | 0 0
0 |λ̃(2)

e |I 0
0 0 |λ̃(3)

e |

⎞⎟⎠ .

199

The dissipation matrix can now be specified as

d (wi+,wj−,nij) = −1
2

|nij| R̃w|Λ̃e|L̃T (vj− − vi+) . (26)

Alternatively, using the partitioning (24) by columns, the dissipation can be written similarly as in
expression (18),

d (wi+,wj−,nij) = −1
2

|nij|
(
|λ̃(1)

e | r̃(1)
w l̃(1) T + |λ̃(2)

e | r̃(2)
w · l̃(2) T + |λ̃(3)

e | r̃(3)
w l̃(3) T

)
.

= −1
2

|nij|
(
|λ̃(1)

e | r̃(1)
w l̃(1) T

+
d∑

α=1

|λ̃(2)
e | (r̃(2)

w · eα)(̃l(2) · eα)T + |λ̃(3)
e | r̃(3)

w l̃(3) T
)
.

(27)

Note that the following symmetry property holds

Lemma 3.
d (wi+,wj−,nij) = −d (wj−,wi+,−nij)

Derivation of partial derivatives of the reconstruction

Differentiating the limiters (7.21) yields

φb(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2a

a2 − b2 + ε

(a2 + b2 + ε)2
χ(ab) (van Albada),

4a
a2 − b2 + ε[

(a + b)2 + ε
]2 χ(ab) (van Leer).

(28)

Expressions (7.21) and (28) imply the symmetry properties

φ(b, a) = φ(a, b), φa(b, a) = φb(a, b), φb(−a,−b) = −φb(a, b). (29)

Differentiating the reconstruction expressions (7.19), (7.22) yields

δµi+ = δµi +
{
φa(∆+µi,∆−µi) [δµj − δµi]

+ φb(∆+µi,∆−µi)
[
2tij · ∇hδµi − (δµj − δµi)

]}tij

2
· ∇hµi

+ φ(∆+µi,∆−µi)
tij

2
· ∇hδµi

=
{

1 +
[
φb(∆+µi,∆−µi) − φa(∆+µi,∆−µi)

]tij

2
· ∇hµi

}
δµi

−
{[

φb(∆+µi,∆−µi) − φa(∆+µi,∆−µi)
]tij

2
· ∇hµi

}
δµj

+
[
φ(∆+µi,∆−µi) + φb(∆+µi,∆−µi)2tij · ∇hµi

]tij

2
· ∇hδµi

=
(
1 + αi

ij

)
δµi − αi

ij δµj

+
[
φ(∆+µi,∆−µi) + φb(∆+µi,∆−µi)2tij · ∇hµi

]tij

2
· ∇hδµi,

(30)

200

δµj− = δµj −
{
φa(∆+µj,∆−µj)

[
2tij · ∇hδµj − (δµj − δµi)

]
+ φb(∆+µj,∆−µj)(δµj − δµi)

}tij

2
· ∇hµj

− φ(∆+µj,∆−µj)
tij

2
· ∇hδµj

=
{

1 +
[
φa(∆+µj,∆−µj) − φb(∆+µj,∆−µj)

]tij

2
· ∇hµj

}
δµj

−
{[

φa(∆+µj,∆−µj) − φb(∆+µj,∆−µj)
]tij

2
· ∇hµj

}
δµi

−
[
φ(∆+µj,∆−µj) + φa(∆+µj,∆−µj)2tij · ∇µj

]tij

2
· ∇hδµj

=
(
1 − αj

ij

)
δµj + αj

ij δµi

−
[
φ(∆+µj,∆−µj) + φa(∆+µj,∆−µj)2tij · ∇µj

]tij

2
· ∇hδµj ,

(31)

where

αk
ij =

[
φb(∆+µk,∆−µk) − φa(∆+µk,∆−µk)

]tij

2
· ∇hµk k ∈ { i, j } . (32)

Moreover, by definition (7.22),

φb(∆+µi,∆−µi) = φb(µj − µi, 2tij · ∇hµi − (µj − µi)), (33)

and by property (29) and definition (7.22),

φa(∆+µj ,∆−µj) = φb(∆−µj ,∆+µj) = φb(µj − µi, 2tij · ∇hµj − (µj − µi)). (34)

Defining

βk
ij = φb

(
µj − µi, 2tij · ∇hµk − (µj − µi)

)
2tij · ∇hµk. (35)

implies that, by expressions (33) and (34),

φb(∆+µi,∆−µi) 2tij · ∇hµi = βi
ij

φa(∆+µj,∆−µj) 2tij · ∇hµj = βj
ij

(36)

Substituting expression (36) into expressions (30) and (31) yields that

δµi+ =
(
1 + αi

ij

)
δµi − αi

ij δµj +
[
φ(∆+µi,∆−µi) + βi

ij

]tij

2
· ∇hδµi,

δµj− =
(
1 − αj

ij

)
δµj + αj

ij δµi −
[
φ(∆+µj,∆−µj) + βj

ij

]tij

2
· ∇hδµj ,

(37)

201

By comparing (7.39) and (37) it is clear that the partial derivatives of the reconstruction are:

∂wi+
ij

∂wi
= diag

{
1 + αi

ij

}
∂wi+

ij

∂wj
= diag

{
−αi

ij

}
∂wi+

ij

∂pi
ij

= diag
{
+1/2

[
φ(∆+µi,∆−µi) + βi

ij

]}
∂wj−

ij

∂wi
= diag

{
+αj

ij

}
∂wj−

ij

∂wj
= diag

{
1 − αj

ij

}
∂wj−

ij

∂pj
ij

= diag
{

−1/2

[
φ(∆+µj ,∆−µj) + βj

ij

]}

where each term is defined component-wise.

APPENDIX II

Implementation of “assignment to scalar” RTOp transformation operator.

// ///
// RTOp_TOp_assign_scalar.h

#ifndef RTOP_TOP_ASSIGN_SCALAR_H
#define RTOP_TOP_ASSIGN_SCALAR_H

#include "RTOpPack/include/RTOp.h"

#ifdef __cplusplus
extern "C" {
#endif

extern const struct RTOp_RTOp_vtbl_t
RTOp_TOp_assign_scalar_vtbl;

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha,
struct RTOp_RTOp* op);

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op);
int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha,

struct RTOp_RTOp* op);

#ifdef __cplusplus
}
#endif

#endif // RTOP_TOP_ASSIGN_SCALAR_H

// ///
// RTOp_TOp_assign_scalar.c

202

#include "RTOpStdOpsLib/include/RTOp_TOp_assign_scalar.h"
#include "RTOpPack/include/RTOp_obj_value_vtbl.h"
#include "RTOpPack/include/RTOp_obj_null_vtbl.h"

static int RTOp_TOp_assign_scalar_apply_op(
const struct RTOp_RTOp_vtbl_t* vtbl, const void* obj_data
,const int num_vecs, const struct RTOp_SubVector vecs[]
,const int num_targ_vecs
,const struct RTOp_MutableSubVector targ_vecs[]
,RTOp_ReductTarget targ_obj)

{
RTOp_value_type alpha = *((RTOp_value_type*)obj_data);
RTOp_index_type z_sub_dim = targ_vecs[0].sub_dim;
RTOp_value_type *z_val = targ_vecs[0].values;
ptrdiff_t z_val_s = targ_vecs[0].values_stride;
RTOp_index_type k;
if(num_vecs != 0 || vecs != NULL)

return RTOp_ERR_INVALID_NUM_VECS;
if(num_targ_vecs != 1 || targ_vecs == NULL)

return RTOp_ERR_INVALID_NUM_TARG_VECS;
for(k = 0; k < z_sub_dim; ++k, z_val += z_val_s)

*z_val = alpha;
return 0;

}

const struct RTOp_RTOp_vtbl_t RTOp_TOp_assign_scalar_vtbl =
{

&RTOp_obj_value_vtbl
,&RTOp_obj_null_vtbl
,"TOp_assign_scalar"
,NULL
,RTOp_TOp_assign_scalar_apply_op
,NULL
,NULL

};

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
op->vtbl = &RTOp_TOp_assign_scalar_vtbl;
op->vtbl->obj_data_vtbl->obj_create(NULL,NULL

,&op->obj_data);
((RTOp_value_type)op->obj_data) = alpha;
return 0;

}

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op)
{

op->vtbl->obj_data_vtbl->obj_free(NULL,NULL,&op->obj_data);
op->vtbl = NULL;
return 0;

}

int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
((RTOp_value_type)op->obj_data) = alpha;
return 0; // success?

}

203

Automatic generation of RTOp subclasses in C

To make the process of creating an RTOp C subclass easier and because there is boiler-plate code that is
needed, a Perl script called new rtop.pl has been implemented. This script automates most of the work
required to create a new RTOp subclass. This script prompts the user for the answers to a set of questions
about the operation being performed. In many cases, the output header and source files will be ready to
compile and use. In other cases, the user will have to finish the implementation.

Many different types of specialized operators, including all of the example operators in (8.1)–(8.4), can be
completely implemented with the script. Below, we show the use of this script in generating the source
code for C RTOp subclasses for the example specialized operators in (8.2) and (8.4).

Example transformation operator

The Perl script is first demonstrated on the transformation operator in (8.4). Note that all of the data
required to perform the operation is contained in the four input vectors a, b, u and w. The only exception is
the value of∞ which may be platform dependent. Therefore, we will allow the ANA to define the value of
∞ as an operator object instance data member called inf val. Before running the script, the vector
arguments are ordered and mapped into the generic names v0 = a, v1 = b, v2 = u, v3 = w, z0 = d and
then (8.4) is restated as:

z0
i ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(vl − v2)1/2

i if v3
i < 0 and v1

i < +∞
1 if v3

i < 0 and v1
i = +∞

(v2 − v0)1/2
i if v3

i ≥ 0 and v0
i > −∞

1 if v3
i ≥ 0 and v0

i = −∞

. (38)

We will call this operator subclass TOp trice diag scal. The interactive session with the script
new rtop.pl is shown below:

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?

: TOp_trice_diag_scal

2) Is your operator coordinate invariant?

[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?

: 4

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?

: 1

5) Does your operator require extra data which is not in the input vectors?

204

[y] or [n] : y

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: inf_val

6) Does your operator perform a reduction?

[y] or [n] : n

7.a) Does your element-wise operation(s) need temporary variables?

[y] or [n] : n

7.c) Give the C statement(s) for element-wise transformation operation?

You can choose:

Non-mutable operator data (don’t change here) : inf_val

Non-mutable vector elements (don’t change here) : v0, v1, v2, v3

Mutable vector elements (must modify here) : z0

? if(v3 < 0 && v1 < +inf_val)

? z0 = sqrt(v1-v2);

? else if(v3 < 0 && v1 >= +inf_val)

? z0 = 1;

? else if(v3 >= 0 && v0 > -inf_val)

? z0 = sqrt(v2-v0);

? else if(v3 >= 0 && v0 <= -inf_val)

? z0 = 1;

?

The implementation files RTOp_TOp_trice_diag_scal.h and

RTOp_TOp_trice_diag_scal.c should be complete!

After the script creates these files, they just need to be integrated into the build system (i.e. added to the
makefile) and compiled. The only part of the implemented RTOp subclass that is more than just
boiler-plate code is the loop that actually performs the element-wise transformation. Below is a snippet of
code from the static function RTOp TOp trice diag scal apply op(...) for the loop that
actually performs the user-defined element-wise transformation.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s

,v2_val += v2_val_s, v3_val += v3_val_s, z0_val += z0_val_s)

{

// Element-wise transformation

if((*v3_val) < 0 && (*v1_val) < +(*inf_val))

(*z0_val) = sqrt((*v1_val)-(*v2_val));

else if((*v3_val) < 0 && (*v1_val) >= +(*inf_val))

(*z0_val) = 1;

else if((*v3_val) >= 0 && (*v0_val) > -(*inf_val))

(*z0_val) = sqrt((*v2_val)-(*v0_val));

else if((*v3_val) >= 0 && (*v0_val) <= -(*inf_val))

205

(*z0_val) = 1;

}

The above code loops over a chunk of vector elements using BLAS-compatible strided iterators (of
dimension sub dim which are provided by the vector implementation) and performs the transformation
operation. The generated source code can then be manually post-modified (and perhaps better optimized).

The developer of an ANA implemented in C++, for instance, can include the header file
RTOp TOp trice diag scal.h and then a RTOp object for this transformation operator can be
created, used and destroyed as:

#include "RTOp_TOp_trice_diag_scal.h"

...

void trice_diag_scale(const AbstractVector& a, const AbstractVector& b

,const AbstractVector& u, const AbstractVector& w, const AbstractVector& d)

{

// Create and initialize the instance data for the operator

const RTOp_value_type inf_val = 1e+50;

const RTOp_RTOp trice_scal_op;

RTOp_TOp_trice_diag_scal_construct(inf_val,&trice_scal_op);

// Apply the operator to the existing vectors a, b, u, w and d

const AbstractVector* vecs[] = { &a, &b, &u, &w };

AbstractVector* targ_vecs[] = { &d };

apply_op(trice_scal_op, 4, vecs, 1, targ_vecs, RTOp_REDUCT_OBJ_NULL);

// Destroy the operator and clean up memory

RTOp_TOp_trice_diag_scal_destroy(&trice_scal_op);

}

The above constructor and destructor are declared in the generated header file and are automatically
implemented in the source file by the script. The above code snippet uses the C++ vector interface
AbstractVector that is included in the example code. The apply op(...) function simply calls
the apply op(...) method on the first vecs[0] object. Note that the order of the vector arguments a,
b, u and w matches the order defined in (38). The ordering of the vector arguments must match and this
order is determined by the developer that created the RTOp subclass.

Example reduction operator

The next example operator we consider is the reduction operation in (8.2). First we rewrite the operation in
generic standard form as:

α ← {max α : v0 + αv1 ≥ β}, (39)

This reduction operation is more complex than the previous example transformation operation and requires
a little more thought. If we can assume that v0

i ≥ β, for i = 1 . . . n before going in, what the above
reduction is really asking for is the minimum αi where:

206

αi = max((β − v0
i)/v

1
i , 0).

The reduction operation (39) can then be reexpressed as:

α ← min{max((β − v0
i)/v

1
i , 0), for i = 1 . . . n}.

This reduction operation requires the scalar operator data β (beta) and produces the scalar reduction
object α (alpha). To make this operator work correctly, we must initialize the reduction object alpha to
a very large value. In this implementation we will assume that 1e+200 will be larger than any reasonable
values of the reduction. In general, whenever using min(...) for the reduction of intermediate reduction
objects, we generally want to initialize the reduction object to some large value before performing the first
reduction.

We will call this operator ROp max feas step and the following is the interactive session with the
new rtop.pl script used to create the implementation files.

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?

: ROp_max_feas_step

2) Is your operator coordinate invariant?

[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?

: 2

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?

: 0

5) Does your operator require extra data which is not in the input vectors?

[y] or [n] : y

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: beta

6) Does your operator perform a reduction?

[y] or [n] : y

207

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: alpha

6.a) Does the reduction object require nonzero initialization?

[y] or [n] : y

6.b) Give the initial values for the reduction object data:

alpha ? 1e+200

6.c) Choose the reduction of intermediate reduction objects:

1: sum{value,value}

2: min{value,value}

3: max{value,value}

4: other

Choose 1-4? 2

7.a) Does your element-wise operation(s) need temporary variables?

[y] or [n] : n

7.b) Give the C statement(s) for element-wise reduction operation?

You can choose:

Non-mutable operator data (don’t change here) : beta

Non-mutable vector elements (don’t change here) : v0, v1

Element-wise reduction data (must be set here) : alpha_ith

? alpha_ith = (beta - v0) / v1;

? alpha_ith = max(alpha_ith, 0.0);

?

The implementation files RTOp_ROp_max_feas_step.h and

RTOp_ROp_max_feas_step.c should be complete!

The code snippet that loops through the elements and performs the reduction operation is contained in the
generated static function RTOp ROp max feas step apply op(...) and is shown below.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s)

{

// Element-wise reduction

alpha_ith = ((*beta) - (*v0_val)) / (*v1_val);

alpha_ith = max(alpha_ith, 0.0);

// Reduction of intermediates

(*alpha) = min((*alpha), alpha_ith);

}

Since this is a reduction operator, the ANA code must create the reduction target object before it is passed

208

into a vector object’s apply op(...) method. The follow code snippet shows how a ANA code might
use this reduction operator and extract the value of the reduction.

#include "RTOp_ROp_max_feas_step.h"

...

RTOp_value_type max_feas_step(const AbstractVector& x, const AbstractVector& d

,const RTOp_value_type beta)

{

// Create and initialize the instance data for the operator

RTOp_RTOp max_feas_step_op;

RTOp_ROp_max_feas_step_construct(beta,&max_feas_step_op);

// Create the reduction object

RTOp_ReductTarget max_feas_step_reduct_obj;

RTOp_reduct_obj_create(&max_feas_step_op,&max_feas_step_reduct_obj);

// Apply the reduction operator to the existing vectors x and d

const AbstractVector vecs[] { &x, &d };

apply_op(max_feas_step_op, 2, vecs, 0, NULL, &max_feas_step_reduct_obj);

// Extract the value from the reduction object

RTOp_value_type alpha = RTOp_ROp_max_feas_step_val(max_feas_step_reduct_obj);

// Destroy the operator and clean up memory

RTOp_ROp_max_feas_step_destroy(&max_feas_step_op);

return alpha;

}

The above code snippet also uses the example C++ vector interface AbstractVectormentioned above.

That is really all there is to creating most new RTOp operators using the provided script. More details on
the use of the script new rtop.pl can be found in the help file HowTo.CreateNewRTOpSubclass
at WEBSITE.

209

DISTRIBUTION:

1 MS 9018
Central Technical Files, 8940-2

2 MS 0899
Technical Library, 4916

2 MS 0619
Review & Approval Desk, 4916

2 MS 0123
LDRD Office, 1011

1 MS 0321
Bill Camp, 9200

1 MS 9003
Kenneth Washington, 8900

1 MS 1110
David Womble, 9210

1 MS 0370
Scott Mitchell, 9211

1 MS 0316
Sudip Dosanjh, 9233

1 MS 0836
Ray Finley, 6115

1 MS 1310
Steve Kempka, 9113

1 MS 0817
Jim Ang, 9224

1 MS 9159
Steve Thomas, 8962

1 MS 1110
Susan Rountree, 9214

1 MS 0382
Jim Stewart, 9143

1 MS 0828
Martin Pilch, 9133

1 MS 0318
Jennifer Nelson, 9209

The report is available from:
www.cs.sandia.gov/̃bartv/papers.html/SensSAND.pdf
and has been distributed to external
collaborators and staff members electronically
(as per the following electronic distribution
list).

210

ELECTRONIC DISTRIBUTION:

1 Jan Hesthaven
Division of Applied Mathematics
Brown University, Box F
182 George Street, no. 325
Providence, RI 02912

1 Lucas Wilcox
Division of Applied Mathematics
Brown University, Box F
182 George Street, no. 325
Providence, RI 02912

1 Matthias Heinkenschloss
Department of Computational and
Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

1 Tim Warburton
Department of Computational and
Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

1 David Keyes
Appl Phys and Appl Math
Columbia University
200 S. W. Mudd Bldg., MC 4701
500 W. 120th Street
New York, NY, 10027

1 Omar Ghattas
Carnegie Mellon University
5000 Forbes Ave., Porter Hall
Pittsburgh, PA 15213

1 Volkan Akcelik
Carnegie Mellon University
5000 Forbes Ave., Porter Hall
Pittsburgh, PA 15213

1 Judy Hill
Carnegie Mellon University
5000 Forbes Ave., Porter Hall
Pittsburgh, PA 15213

1 Larry Biegler
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

1 Martin Berggren
Box 120
S-751 04, Uppsala
Sweden

1 MS 0316
John Shadid, 9233

1 MS 0370
Tim Trucano, 9211

1 MS 1110
Bill Hart, 9215

1 MS 1110
Cindy Phillips, 9215

1 MS 0735
Sean McKenna, 6115

1 MS 0316
Brett Bader, 9233

1 MS 1110
Todd Coffey, 9233

1 MS 0380
Garth Reese, 9142

1 MS 0380
Manoj Bhardwaj, 9142

1 MS 0380
Kendal Pierson, 9142

1 MS 0370
Mike Eldred, 9211

1 MS 1111
Patrick Knupp, 9211

1 MS 0370
Laura Swiler, 9211

1 MS 0370
David Gay, 9211

1 MS 1111
Rich Lehoucq, 9214

211

1 MS 1110
Mike Heroux, 9214

1 MS 1110
Pavel Bochev, 9214

1 MS 1110
David Day, 9214

1 MS 1110
Ulrich Hetmaniuk, 9214

1 MS 0750
David Aldrich, 6116

1 MS 1110
Adrei Draganescu, 9211

1 MS 0817
Jim Ang, 9224

1 MS 1110

Andy Salinger, 9233

1 MS 0316
Roger Pawloski, 9233

1 MS 0316
Robert Hoekstra, 9233

1 MS 0316
Eric Phipps, 9233

1 MS 0316
Scott Hutchinson, 9233

1 MS 0321
Laurie Frink, 9212

1 MS 9159
Paul Boggs, 8962

1 MS 9159
Kevin Long, 8962

212

